Terrestrial primary production for the conterminous United States derived from Landsat 30 m and MODIS 250 m

被引:124
|
作者
Robinson, Nathaniel P. [1 ,2 ]
Allred, Brady W. [1 ,2 ]
Smith, William K. [3 ]
Jones, Matthew O. [1 ,2 ]
Moreno, Alvaro [2 ]
Erickson, Tyler A. [4 ]
Naugle, David E. [1 ]
Running, Steven W. [1 ,2 ]
机构
[1] Univ Montana, WA Franke Coll Forestry & Conservat, Missoula, MT 59812 USA
[2] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA
[3] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA
[4] Google Inc, Mountain View, CA 94043 USA
关键词
Google earth engine; gross primary production; landsat; MOD17; MODIS; net primary production; NET PRIMARY PRODUCTION; GROSS PRIMARY PRODUCTION; CARBON FLUX MODEL; HUMAN APPROPRIATION; DATA SET; ECOSYSTEM PRODUCTIVITY; FOREST PRODUCTIVITY; VEGETATION DYNAMICS; COVER DATABASE; USE EFFICIENCY;
D O I
10.1002/rse2.74
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Terrestrial primary production is a fundamental ecological process and a crucial component in understanding the flow of energy through trophic levels. The global MODIS gross primary production (GPP) and net primary production (NPP) products (MOD17) are widely used for monitoring GPP and NPP at coarse resolutions across broad spatial extents. The coarse input datasets and global biome-level parameters, however, are well-known limitations to the applicability of the MOD17 product at finer scales. We addressed these limitations and created two improved products for the conterminous United States (CONUS) that capture the spatiotemporal variability in terrestrial production. The MOD17 algorithm was utilized with medium resolution land cover classifications and improved meteorological data specific to CONUS in order to produce: (a) Landsat derived 16-day GPP and annual NPP at 30m resolution from 1986 to 2016 (GPP(L30) and NPPL30, respectively); and (b) MODIS derived 8-day GPP and annual NPP at 250m resolution from 2001 to 2016 (GPP(M250) and NPPM250 respectively). Biome-specific input parameters were optimized based on eddy covariance flux tower-derived GPP data from the FLUXNET2015 database. We evaluated GPP(L30) and GPP(M250) products against the standard MODIS GPP product utilizing a select subset of representative flux tower sites, and found improvement across all land cover classes except croplands. We also found consistent interannual variability and trends across NPPL30, NPPM250, and the standard MODIS NPP product. We highlight the application potential of the production products, demonstrating their improved capacity for monitoring terrestrial production at higher levels of spatial detail across broad spatiotemporal scales.
引用
收藏
页码:264 / 280
页数:17
相关论文
共 50 条
  • [1] Up-scaling of SEBAL derived evapotranspiration maps from Landsat (30 m) to MODIS (250 m) scale
    Hong, Sung-ho
    Hendrickx, Jan M. H.
    Borchers, Brian
    JOURNAL OF HYDROLOGY, 2009, 370 (1-4) : 122 - 138
  • [2] Down-scaling of SEBAL derived evapotranspiration maps from MODIS (250 m) to Landsat (30 m) scales
    Hong, Sung-Ho
    Hendrickx, Jan M. H.
    Borchers, Brian
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (21) : 6457 - 6477
  • [3] A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data
    Xiao, Jingfeng
    Zhuang, Qianlai
    Law, Beverly E.
    Chen, Jiquan
    Baldocchi, Dennis D.
    Cook, David R.
    Oren, Ram
    Richardson, Andrew D.
    Wharton, Sonia
    Ma, Siyan
    Martin, Timothy A.
    Verma, Shashi B.
    Suyker, Andrew E.
    Scott, Russell L.
    Monson, Russell K.
    Litvak, Marcy
    Hollinger, David Y.
    Sun, Ge
    Davis, Kenneth J.
    Bolstad, Paul V.
    Burns, Sean P.
    Curtis, Peter S.
    Drake, Bert G.
    Falk, Matthias
    Fischer, Marc L.
    Foster, David R.
    Gu, Lianhong
    Hadley, Julian L.
    Katul, Gabriel G.
    Matamala, Roser
    McNulty, Steve
    Meyers, Tilden P.
    Munger, J. William
    Noormets, Asko
    Oechel, Walter C.
    Paw U, Kyaw Tha
    Schmid, Hans Peter
    Starr, Gregory
    Torn, Margaret S.
    Wofsy, Steven C.
    REMOTE SENSING OF ENVIRONMENT, 2010, 114 (03) : 576 - 591
  • [4] LAND COVER CHANGE ANALYSIS IN MEXICO USING 30M LANDSAT AND 250M MODIS DATA
    Colditz, R. R.
    Llamas, R. M.
    Ressl, R. A.
    36TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, 2015, 47 (W3): : 367 - 374
  • [5] Validation of a 30 m resolution flood hazard model of the conterminous United States
    Wing, Oliver E. J.
    Bates, Paul D.
    Sampson, Christopher C.
    Smith, Andrew M.
    Johnson, Kris A.
    Erickson, Tyler A.
    WATER RESOURCES RESEARCH, 2017, 53 (09) : 7968 - 7986
  • [6] Generation and comprehensive validation of 30 m conterminous United States Landsat percent tree cover and forest cover loss annual products
    Egorov, Alexey
    Roy, David P.
    Boschetti, Luigi
    SCIENCE OF REMOTE SENSING, 2023, 7
  • [7] Developing a 30-m grassland productivity estimation map for central Nebraska using 250-m MODIS and 30-m Landsat-8 observations
    Gu, Yingxin
    Wylie, Bruce K.
    REMOTE SENSING OF ENVIRONMENT, 2015, 171 : 291 - 298
  • [8] Enhancing Spatio-Temporal Fusion of MODIS and Landsat Data by Incorporating 250 m MODIS Data
    Wang, Qunming
    Zhang, Yihang
    Onojeghuo, Alex O.
    Zhu, Xiaolin
    Atkinson, Peter M.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (09) : 4116 - 4123
  • [9] Conterminous United States demonstration and characterization of MODIS-based Landsat ETM plus atmospheric correction
    Roy, D. P.
    Qin, Y.
    Kovalskyy, V.
    Vermote, E. F.
    Ju, J.
    Egorov, A.
    Hansen, M. C.
    Kommareddy, I.
    Yan, L.
    REMOTE SENSING OF ENVIRONMENT, 2014, 140 : 433 - 449
  • [10] The Retrieval of 30-m Resolution LAI from Landsat Data by Combining MODIS Products
    Zhou, Jianmin
    Zhang, Shan
    Yang, Hua
    Xiao, Zhiqiang
    Gao, Feng
    REMOTE SENSING, 2018, 10 (08)