Scale-space spatio-temporal random fields: Application to the detection of growing microbial patterns from surface roughness

被引:3
|
作者
Ahmad, Ola [1 ]
Collet, Christophe [1 ]
机构
[1] Univ Strasbourg, CNRS, iCube, 300 Bd Sebastien Brant, F-67412 Illkirch Graffenstaden, France
关键词
Spatio-temporal modeling; Scale-space analysis; Gaussian random field; Detection; Surface roughness; Microbial patterns; GAUSSIAN KINEMATIC FORMULA; MULTIPLE-SCLEROSIS; UNKNOWN LOCATION; IMAGES; KERNEL; SIGNAL; FMRI;
D O I
10.1016/j.patcog.2016.03.034
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatio-temporal statistical models have been receiving increasing attention in a variety of image processing applications, notably for detecting noisy patterns or shapes during their temporal evolutions. Space-time models are however still limited to detect accurately spatio-temporal patterns of multi resolution properties. To this end, the present paper addresses the detection of spatio-temporal patterns from multitemporal images at multiple scales. We propose a new stochastic model that incorporates scale-space and space-time models based on random fields specifically, a scale space spatio-temporal Gaussian random field. Thereby, a statistical test to assess the null hypothesis (noise only) is computed by the expected Euler characteristic (EC) approach. A validation of our approach is investigated on synthetic examples using one dimensional signals. Then, a real application is carried out for detection of growing microorganisms from surface roughness, acquired at multiple time points. Based on the detection results, microbial colonies are thereafter discriminated through their scale and growth evolution. The results show the possibility of investigating robust and complete analysis in the context of precocious pattern detection. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 38
页数:12
相关论文
共 36 条
  • [1] Linear spatio-temporal scale-space
    Lindeberg, T
    SCALE-SPACE THEORY IN COMPUTER VISION, 1997, 1252 : 113 - 127
  • [2] Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space
    Tony Lindeberg
    Journal of Mathematical Imaging and Vision, 2011, 40 : 36 - 81
  • [3] Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space
    Lindeberg, Tony
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (01) : 36 - 81
  • [4] A Bayesian signal detection procedure for scale-space random fields
    Rohani, M. Farid
    Shafie, Khalil
    Noorbaloochi, Siamak
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (02): : 311 - 325
  • [5] Time-recursive velocity-adapted spatio-temporal scale-space filters
    Lindeberg, T
    COMPUTER VISON - ECCV 2002, PT 1, 2002, 2350 : 52 - 67
  • [6] Spatio-Temporal Event Detection Using Dynamic Conditional Random Fields
    Yin, Jie
    Hu, Derek Hao
    Yang, Qiang
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1321 - 1326
  • [7] Dynamic Texture Recognition Using Time-Causal Spatio-Temporal Scale-Space Filters
    Jansson, Ylva
    Lindeberg, Tony
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, SSVM 2017, 2017, 10302 : 16 - 28
  • [8] Scale-space module detection for random fields observed on a graph non-embedded in a metric space
    Chalmond, Bernard
    PATTERN ANALYSIS AND APPLICATIONS, 2016, 19 (03) : 665 - 678
  • [9] Scale-space module detection for random fields observed on a graph non-embedded in a metric space
    Bernard Chalmond
    Pattern Analysis and Applications, 2016, 19 : 665 - 678
  • [10] Variation in use of Caesarean section in Norway: An application of spatio-temporal Gaussian random fields
    Mannseth, Janne
    Berentsen, Geir D.
    Skaug, Hans J.
    Lie, Rolv T.
    Moster, Dag
    SCANDINAVIAN JOURNAL OF PUBLIC HEALTH, 2021, 49 (08) : 891 - 898