Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces

被引:83
|
作者
Golombek, M. P. [1 ]
Huertas, A. [1 ]
Marlow, J. [2 ]
McGrane, B. [7 ]
Klein, C. [3 ]
Martinez, M. [1 ,5 ]
Arvidson, R. E. [2 ]
Heet, T. [2 ]
Barry, L. [2 ]
Seelos, K. [9 ]
Adams, D. [1 ]
Li, W. [4 ]
Matijevic, J. R.
Parker, T. [1 ]
Sizemore, H. G. [8 ]
Mellon, M. [8 ]
McEwen, A. S. [6 ]
Tamppari, L. K. [1 ]
Cheng, Y. [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA
[3] CALTECH, Dept Astron, Pasadena, CA 91125 USA
[4] CALTECH, Dept Computat & Neural Syst, Pasadena, CA 91125 USA
[5] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[6] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
[7] Occidental Coll, Dept Geol, Los Angeles, CA 90041 USA
[8] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA
[9] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
关键词
D O I
10.1029/2007JE003065
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The size-frequency distributions of rocks > 1.5 m diameter fully resolvable in High Resolution Imaging Science Experiment (HiRISE) images of the northern plains follow exponential models developed from lander measurements of smaller rocks and are continuous with rock distributions measured at the landing sites. Dark pixels at the resolution limit of Mars Orbiter Camera thought to be boulders are shown to be mostly dark shadows of clustered smaller rocks in HiRISE images. An automated rock detector algorithm that fits ellipses to shadows and cylinders to the rocks, accurately measured (within 1-2 pixels) rock diameter and height (by comparison to spacecraft of known size) of similar to 10 million rocks over > 1500 km(2) of the northern plains. Rock distributions in these counts parallel models for cumulative fractional area covered by 30-90% rocks in dense rock fields around craters, 10-30% rock coverage in less dense rock fields, and 0-10% rock coverage in background terrain away from craters. Above similar to 1.5 m diameter, HiRISE resolves the same population of rocks seen in lander images, and thus size- frequency distributions can be extrapolated along model curves to estimate the number of rocks at smaller diameters. Extrapolating sparse rock distributions in the Phoenix landing ellipse indicate < 1% chance of encountering a potentially hazardous rock during landing or that could impede the opening of the solar arrays. Extrapolations further suggest rocks large enough to depress the ground ice table and small enough to be picked up or pushed by the robotic arm should be present within reach for study after landing.
引用
收藏
页数:32
相关论文
共 15 条
  • [1] Rock Size-Frequency Distributions at the InSight Landing Site, Mars
    Golombek, M. P.
    Trussell, A.
    Williams, N.
    Charalambous, C.
    Abarca, H.
    Warner, N. H.
    Deahn, M.
    Trautman, M.
    Crocco, R.
    Grant, J. A.
    Hauber, E.
    Deen, R.
    EARTH AND SPACE SCIENCE, 2021, 8 (12)
  • [2] The characteristic and size-frequency distribution of rocks at the Zhurong landing site, Mars
    Sun, Xiukuo
    Li, Shouding
    Li, Juan
    Wu, Yanfang
    Zhang, Shuo
    Zheng, Bo
    Zhang, Zhaobin
    Xu, Tao
    Chen, Xinshuo
    Diao, Yiming
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2024, 11
  • [3] Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations
    Golombek, MP
    Haldemann, AFC
    Forsberg-Taylor, NK
    DiMaggio, EN
    Schroeder, RD
    Jakosky, BM
    Mellon, MT
    Matijevic, JR
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2003, 108 (E12)
  • [4] Periglacial landforms at the Phoenix landing site and the northern plains of Mars
    Mellon, Michael T.
    Arvidson, Raymond E.
    Marlow, Jeffrey J.
    Phillips, Roger J.
    Asphaug, Erik
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2008, 113
  • [5] The characteristic and size-frequency distribution of rocks at the Zhurong landing site, Mars (vol 11, 1270079, 2024)
    Sun, Xiukuo
    Li, Shouding
    Li, Juan
    Wu, Yanfang
    Zhang, Shuo
    Zheng, Bo
    Zhang, Zhaobin
    Xu, Tao
    Chen, Xinshuo
    Diao, Yiming
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2024, 11
  • [6] Size-frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions
    Golombek, M
    Rapp, D
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 1997, 102 (E2) : 4117 - 4129
  • [7] Geomorphologic and mineralogic characterization of the northern plains of Mars at the Phoenix Mission candidate landing sites
    Seelos, K. D.
    Arvidson, R. E.
    Cull, S. C.
    Hash, C. D.
    Heet, T. L.
    Guinness, E. A.
    McGuire, P. C.
    Morris, R. V.
    Murchie, S. L.
    Parker, T. J.
    Roush, T. L.
    Seelos, F. P.
    Wolff, M. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2008, 113
  • [8] Catastrophic rupture of lunar rocks: Implications for lunar rock size-frequency distributions
    Ruesch, Ottaviano
    Marshal, Rachael M.
    Iqbal, Wajiha
    Pasckert, Jan Hendrik
    van der Bogert, Carolyn H.
    Patzek, Markus
    ICARUS, 2022, 387
  • [9] The size-frequency and areal distribution of rock clasts at the Spirit landing site, Gusev Crater, Mars
    Ward, JG
    Arvidson, RE
    Golombek, M
    GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (11) : 1 - 4
  • [10] Rock size-frequency distributions analysis at lunar landing sites based on remote sensing and in-situ imagery
    Li, Bo
    Ling, Zongcheng
    Zhang, Jiang
    Chen, Jian
    PLANETARY AND SPACE SCIENCE, 2017, 146 : 30 - 39