Forming of Materials with Cubic Crystal Structure

被引:3
|
作者
Revil-Baudard, Benoit [1 ]
机构
[1] Univ Florida, REEF, Dept Mech & Aerosp Engn, 1350 N Poquito Rd, Shalimar, FL 32579 USA
关键词
Orthotropic yield criterion; Cup drawing; Aluminum;
D O I
10.1016/j.promfg.2020.04.2450
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Generally, the plastic behavior of orthotropic metallic materials with cubic crystal structure is modelled with yield criteria that predict the same response in tension and compression. One drawback associated to using orthotropic yield criteria for simulation of forming processes is related to the uncertainties introduced by the methods used for parameter identification. Very recently, it was shown that advanced non-quadratic criteria such as Yld91 can be represented as polynomials in terms of stress components. Using this equivalent expression, the anisotropy coefficients involved in Yld91 can be obtained using analytical formulas in terms of only experimental flow stresses, or alternatively in terms of only Lankford coefficients for three orientations. In this paper, the predictive capabilities of Hill, Yld 91 and Cazacu calibrated using different identification procedures, either analytical or by numerical minimization are discussed. Moreover, simulation results of deep drawing are presented. (C) 2020 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1300 / 1307
页数:8
相关论文
共 50 条
  • [1] CRYSTAL STRUCTURE OF CEMENT FORMING MATERIALS
    CARTZ, L
    AMERICAN CERAMIC SOCIETY BULLETIN, 1968, 47 (09): : 871 - +
  • [2] ON THE CRYSTAL STRUCTURE OF CUBIC HEXACHLOROETHANE
    ATOJI, M
    ODA, T
    WATANABE, T
    ACTA CRYSTALLOGRAPHICA, 1953, 6 (11-1): : 868 - 868
  • [3] CRYSTAL STRUCTURE OF CUBIC DEUTERIUM CHLORIDE
    SANDOR, E
    FARROW, RFC
    NATURE, 1967, 215 (5107) : 1265 - &
  • [4] Structure and rheology of a micellar cubic crystal
    Eiser, E
    Molino, F
    Porte, G
    Berret, JF
    PROGRESS AND TRENDS IN RHEOLOGY V, 1998, : 266 - 267
  • [5] CRYSTAL STRUCTURE OF CUBIC METABORIC ACID
    ZACHARIASEN, WH
    ACTA CRYSTALLOGRAPHICA, 1963, 16 (05): : 380 - &
  • [6] Generalization of intrinsic ductile-to-brittle criteria by Pugh and Pettifor for materials with a cubic crystal structure
    Senkov, O. N.
    Miracle, D. B.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] Generalization of intrinsic ductile-to-brittle criteria by Pugh and Pettifor for materials with a cubic crystal structure
    O. N. Senkov
    D. B. Miracle
    Scientific Reports, 11
  • [8] Superconductivity in PtSbS with a Noncentrosymmetric Cubic Crystal Structure
    Mizutani, Ryosuke
    Okamoto, Yoshihiko
    Nagaso, Hayate
    Yamakawa, Youichi
    Takatsu, Hiroshi
    Kageyama, Hiroshi
    Kittaka, Shunichiro
    Kono, Yohei
    Sakakibara, Toshiro
    Takenaka, Koshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (09)
  • [9] Structure of a Bloch domain wall in a cubic crystal
    Antonyuk, OA
    Tychko, AV
    Kovalenko, VF
    PHYSICS OF THE SOLID STATE, 2004, 46 (05) : 861 - 866
  • [10] Metric Dimension of Crystal Cubic Carbon Structure
    Zhang, Xiujun
    Naeem, Muhammad
    JOURNAL OF MATHEMATICS, 2021, 2021