The method of fundamental solutions for eigenproblems with Laplace and biharmonic operators

被引:0
|
作者
Reutskiy, SY [1 ]
机构
[1] Lab Magnetohydrodynam, UA-61142 Kharkov, Ukraine
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2005年 / 2卷 / 03期
关键词
method of fundamental solutions; membranes and plates; free vibration problem;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper a new meshless method for eigenproblems with Laplace and biharmonic operators in simply and multiply connected domains is presented. The solution of an eigenvalue problem is reduced to a sequence of inhomogeneous problems with the differential operator studied. These problems are solved using the method of fundamental solutions. The method presented shows a high precision in simply and multiply connected domains. The results of the numerical experiments justifying the method are presented.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 50 条
  • [1] On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations
    Chen, J. T.
    Wu, C. S.
    Lee, Y. T.
    Chen, K. H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (06) : 851 - 879
  • [2] Localized method of fundamental solutions for solving two-dimensional Laplace and biharmonic equations
    Fan, C. M.
    Huang, Y. K.
    Chen, C. S.
    Kuo, S. R.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 101 : 188 - 197
  • [3] THE METHOD OF FUNDAMENTAL SOLUTIONS APPLIED TO SOME INVERSE EIGENPROBLEMS
    Alves, Carlos J. S.
    Antunes, Pedro R. S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03): : A1689 - A1708
  • [4] Analysis on the method of fundamental solutions for biharmonic equations
    Dou, Fangfang
    Li, Zi-Cai
    Chen, C. S.
    Tian, Zhaolu
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 346 - 366
  • [5] Method of fundamental solutions formulations for biharmonic problems
    Gaspar, Csaba
    Karageorghis, Andreas
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2025, 175
  • [6] The method of fundamental solutions for eigenproblems in domains with and without interior holes
    Tsai, CC
    Young, DL
    Chen, CW
    Fan, CM
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2069): : 1443 - 1466
  • [7] Eigenfunctions and Fundamental Solutions of the Caputo Fractional Laplace and Dirac Operators
    Ferreira, Milton
    Vieira, Nelson
    MODERN TRENDS IN HYPERCOMPLEX ANALYSIS, 2016, : 191 - 202
  • [8] The Trefftz method using fundamental solutions for biharmonic equations
    Li, Zi-Cai
    Lee, Ming-Gong
    Chiang, John Y.
    Liu, Ya Ping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (15) : 4350 - 4367
  • [9] The closed-form particular solutions for Laplace and biharmonic operators using a Gaussian function
    Lamichhane, A. R.
    Chen, C. S.
    APPLIED MATHEMATICS LETTERS, 2015, 46 : 50 - 56
  • [10] Fundamental solutions for the super Laplace and Dirac operators and all their natural powers
    De Bie, H.
    Sommen, F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 1320 - 1328