A large volume, portable, real-time PCR reactor

被引:1
|
作者
Qiu, Xianbo [1 ]
Mauk, Michael G. [1 ]
Chen, Dafeng [1 ]
Liu, Changchun [1 ]
Bau, Haim H. [1 ]
机构
[1] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
关键词
ISOTHERMAL AMPLIFICATION; MICROFLUIDIC CASSETTE; TEMPERATURE CONTROL; SYSTEM; CHIP; DIAGNOSIS; CHAMBER; DEVICES;
D O I
10.1039/c0lc00038h
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A point-of-care, diagnostic system incorporating a portable thermal cycler and a compact fluorescent detector for real-time, polymerase chain reaction (PCR) on disposable, plastic microfluidic reactors with relatively large reaction volume (ranging from 10 mu L to 100 mu L) is described. To maintain temperature uniformity and a relatively fast temperature ramping rate, the system utilizes double-sided heater that features a master, thermoelectric element and a thermal waveguide connected to a second thermoelectric element. The waveguide has an aperture for optical coupling between a miniature, fluorescent reader and the PCR reaction chamber. The temperature control is accomplished with a modified, feedforward, variable structural proportional-integral-derivative controller. The temperature of the liquid in the reaction chamber tracks the set-point temperature with an accuracy of +/- 0.1 degrees C. The transition times from one temperature to another are minimized with controllable overshoots (< 2 degrees C) and undershoots (< 5 degrees C). The disposable, single-use PCR chip can be quickly inserted into a thermal cycler/reader unit for point-of-care diagnostics applications. The large reaction chamber allows convenient pre-storing of dried, paraffin-encapsulated PCR reagents (polymerase, primers, dNTPs, dyes, and buffers) in the PCR chamber. The reagents are reconstituted "just in time" by heating during the PCR process. The system was tested with viral and bacterial nucleic acid targets.
引用
收藏
页码:3170 / 3177
页数:8
相关论文
共 50 条
  • [1] Detection of influenza A viruses with a portable real-time PCR instrument
    Molsa, Markos
    Koskela, Katja A.
    Ronkko, Esa
    Ikonen, Niina
    Ziegler, Thedi
    Nikkari, Simo
    JOURNAL OF VIROLOGICAL METHODS, 2012, 181 (02) : 188 - 191
  • [2] Evaluation of a portable, 'real-time' PCR machine for FMD diagnosis
    Donaldson, AI
    Hearps, A
    Alexandersen, S
    VETERINARY RECORD, 2001, 149 (14) : 430 - 430
  • [3] Development of a Portable Low-cost Real-time PCR System
    Chong, K. S.
    Gan, K. B.
    Then, Sue-Mian.
    2017 INTERNATIONAL CONFERENCE ON ROBOTICS, AUTOMATION AND SCIENCES (ICORAS), 2017,
  • [4] The evolution of real-time PCR machines to real-time PCR chips
    Lee, Dasheng
    Chen, Pei-Jer
    Lee, Gwo-Bin
    BIOSENSORS & BIOELECTRONICS, 2010, 25 (07): : 1820 - 1824
  • [5] Real-time PCR
    Costa, J
    ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA, 2004, 22 (05): : 299 - 305
  • [6] Real-time PCR
    Busch, Ulrich
    JOURNAL FUR VERBRAUCHERSCHUTZ UND LEBENSMITTELSICHERHEIT-JOURNAL OF CONSUMER PROTECTION AND FOOD SAFETY, 2007, 2 (02): : 111 - 112
  • [7] Real-Time PCR
    Ulrich Busch
    Journal für Verbraucherschutz und Lebensmittelsicherheit, 2007, 2 : 111 - 112
  • [8] Real-Time PCR
    Jia, Yibing
    LABORATORY METHODS IN CELL BIOLOGY: BIOCHEMISTRY AND CELL CULTURE, 2012, 112 : 55 - 68
  • [9] Real-time PCR
    不详
    BIOTECHNIQUES, 2008, 44 (02) : 179 - +
  • [10] Real-time PCR
    Salmon, M
    BIOFUTUR, 2002, (219) : A1 - A8