Exact filters for doubly stochastic AR models with conditionally Poisson observations

被引:3
|
作者
Evans, J [1 ]
Krishnamurthy, V
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3052, Australia
基金
澳大利亚研究理事会;
关键词
doubly stochastic models; exact filters; nonlinear filters; Poisson observations;
D O I
10.1109/9.754820
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper the authors derive exact filters For the state of a doubly stochastic auto-regressive (AR) process with parameters which vary according to a nonlinear function of a Gauss-Markov process. The observations consist of a discrete-time Poisson process with rate a positive function of the Gauss-Markov process. The dimension of the sufficient statistic increases linearly with the number of observed events.
引用
收藏
页码:794 / 798
页数:5
相关论文
共 50 条
  • [1] Discrete time filters for doubly stochastic Poisson processes and other exponential noise models
    Manton, JH
    Krishnamurthy, V
    Elliott, RJ
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 1999, 13 (05) : 393 - 416
  • [2] ON DOUBLY STOCHASTIC POISSON PROCESSES
    KINGMAN, JFC
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1964, 60 (04): : 923 - &
  • [3] Mixed Poisson distributions in exact solutions of stochastic autoregulation models
    Iyer-Biswas, Srividya
    Jayaprakash, C.
    PHYSICAL REVIEW E, 2014, 90 (05):
  • [4] Exact finite-dimensional filters for doubly stochastic auto-regressive processes
    Krishnamurthy, V
    Elliott, RJ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (09) : 1289 - 1293
  • [5] ON THE INCREMENTS OF THE DOUBLY STOCHASTIC POISSON PROCESSES
    ALVAREZANDRADE, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (05): : 609 - 614
  • [6] SMOOTHING FOR DOUBLY STOCHASTIC POISSON PROCESSES
    SNYDER, DL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (05) : 558 - +
  • [7] ON CONDITIONALLY HETEROSCEDASTIC AR MODELS WITH THRESHOLDS
    Chan, Kung-Sik
    Li, Dong
    Ling, Shiqing
    Tong, Howell
    STATISTICA SINICA, 2014, 24 (02) : 625 - 652
  • [8] Doubly stochastic Poisson process models for precipitation at fine time-scales
    Ramesh, Nadarajah I.
    Onof, Christian
    Xie, Dichao
    ADVANCES IN WATER RESOURCES, 2012, 45 : 58 - 64
  • [9] Recursive nonlinear estimation of random parameter AR models with Poisson observations
    Evans, JS
    Krishnamurthy, V
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 5042 - 5047
  • [10] Forecasting a class of doubly stochastic Poisson processes
    Bouzas, PR
    Aguilera, AM
    Valderrama, MJ
    STATISTICAL PAPERS, 2002, 43 (04) : 507 - 523