Domain Knowledge-Infused Deep Learning for Automated Analog/Radio-Frequency Circuit Parameter Optimization

被引:6
|
作者
Cao, Weidong [1 ,2 ]
Benosman, Mouhacine [1 ]
Zhang, Xuan [2 ]
Ma, Rui [1 ]
机构
[1] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
[2] Washington Univ, Dept ESE, St Louis, MO 63110 USA
基金
美国国家科学基金会;
关键词
SYSTEM;
D O I
10.1145/3489517.3530501
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The design automation of analog circuits is a longstanding challenge. This paper presents a reinforcement learning method enhanced by graph learning to automate the analog circuit parameter optimization at the pre-layout stage, i.e., finding device parameters to fulfill desired circuit specifications. Unlike all prior methods, our approach is inspired by human experts who rely on domain knowledge of analog circuit design (e.g., circuit topology and couplings between circuit specifications) to tackle the problem. By originally incorporating such key domain knowledge into policy training with a ii-lltirrioda I network, the method best learns the complex relations between circuit parameters and design targets, enabling optimal decisions in the optimization process. Experimental results on exemplary circuits show it achieves human-level design accuracy (similar to 99%) with 1.5x efficiency of existing best-performing methods. Our method also shows better generalization ability to unseen specifications and optimality in circuit performance optimization. Moreover, it applies to design radio-frequency circuits 011 emerging semiconductor technologies, breaking the limitations of prior learning methods in designing conventional analog circuits.
引用
收藏
页码:1015 / 1020
页数:6
相关论文
共 41 条
  • [1] RoSE-Opt: Robust and Efficient Analog Circuit Parameter Optimization With Knowledge-Infused Reinforcement Learning
    Cao, Weidong
    Gao, Jian
    Ma, Tianrui
    Ma, Rui
    Benosman, Mouhacine
    Zhang, Xuan
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2025, 44 (02) : 627 - 640
  • [2] Knowledge-Infused Optimization for Parameter Selection in Numerical Simulations
    Meissner, Julia
    Goeddeke, Dominik
    Herschel, Melanie
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT VI, PAKDD 2024, 2024, 14650 : 16 - 28
  • [3] Shades of Knowledge-Infused Learning for Enhancing Deep Learning
    Sheth, Amit
    Gaur, Manas
    Kursuncu, Ugur
    Wickramarachchi, Ruwan
    IEEE INTERNET COMPUTING, 2019, 23 (06) : 54 - 63
  • [4] Expert knowledge-infused deep learning for automatic lung nodule detection
    Tan, Jiaxing
    Huo, Yumei
    Liang, Zhengrong
    Li, Lihong
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2019, 27 (01) : 17 - 35
  • [5] DIEET: Knowledge-Infused Event Tracking in Social Media based on Deep Learning
    Ge, Jun
    Shi, Lei-lei
    Liu, Lu
    Han, Zi-xuan
    Miller, Anthony
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2024, 17 (04) : 2047 - 2064
  • [6] Knowledge-infused deep learning diagnosis model with self-assessment for smart management in HVAC systems
    Du, Zhimin
    Liang, Xinbin
    Chen, Siliang
    Zhu, Xu
    Chen, Kang
    Jin, Xinqiao
    ENERGY, 2023, 263
  • [7] RADIANCE: Radio-Frequency Adversarial Deep-learning Inference for Automated Network Coverage Estimation
    Sarkar, Sopan
    Manshaei, Mohammad Hossein
    Krunz, Marwan
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 832 - 837
  • [8] Automated Deep Learning Platform for Accelerated Analog Circuit Design
    Dutta, Rahul
    James, Ashish
    Raju, Salahuddin
    Jeon, Yong-Joon
    Foo, Chuan Sheng
    Chai, Kevin Tshun Chuan
    2022 IEEE 35TH INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (IEEE SOCC 2022), 2022, : 202 - 206
  • [9] Circuit-Centric Genetic Algorithm for the Optimization of a Radio-Frequency Receiver
    Shin, Hoyeon
    Kwon, Mingi
    Lee, Yeonjun
    Kim, Yeonggi
    Cho, Moon-Kyu
    Song, Ickhyun
    ELECTRONICS, 2025, 14 (04):
  • [10] RFIDeep: Unfolding the potential of deep learning for radio-frequency identification
    Bardon, Gael
    Cristofari, Robin
    Winterl, Alexander
    Barracho, Teo
    Benoiste, Marine
    Ceresa, Claire
    Chatelain, Nicolas
    Courtecuisse, Julien
    Fernandes, Flavia A. N.
    Gauthier-Clerc, Michel
    Gendner, Jean-Paul
    Handrich, Yves
    Houstin, Aymeric
    Krellenstein, Adelie
    Lecomte, Nicolas
    Salmon, Charles-Edouard
    Trucchi, Emiliano
    Vallas, Benoit
    Wong, Emily M.
    Zitterbart, Daniel P.
    Le Bohec, Celine
    METHODS IN ECOLOGY AND EVOLUTION, 2023, 14 (11): : 2814 - 2826