ShinyArchR.UiO: user-friendly,integrative and open-source tool for visualization of single-cell ATAC-seq data using ArchR

被引:5
|
作者
Sharma, Ankush [1 ,2 ,3 ,4 ,5 ,7 ,8 ]
Akshay, Akshay [6 ]
Rogne, Marie [3 ,5 ]
Eskeland, Ragnhild [3 ,4 ,5 ]
机构
[1] Univ Oslo, Dept Biosci, N-0316 Oslo, Norway
[2] Univ Oslo, Inst Basic Med Sci, Dept Informat, N-0316 Oslo, Norway
[3] Univ Oslo, Inst Basic Med Sci, Dept Mol Med, N-0317 Oslo, Norway
[4] Univ Oslo, Fac Math & Nat Sci, PharmaTox Strateg Res Initiat, N-0316 Oslo, Norway
[5] Univ Oslo, Fac Med, Ctr Canc Cell Reprogramming, Inst Clin Med, N-0372 Oslo, Norway
[6] Univ Bern, Dept BioMed Res DBMR, Urol Res Lab, CH-3012 Bern, Switzerland
[7] Oslo Univ Hosp, Inst Canc Res, Dept Canc Immunol, Oslo, Norway
[8] Univ Oslo, KG Jebsen Ctr B Cell Malignancies, Inst Clin Med, N-0379 Oslo, Norway
关键词
CHROMATIN ACCESSIBILITY;
D O I
10.1093/bioinformatics/btab680
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Mapping of chromatin accessibility landscapes in single-cells and the integration with gene expression enables a better understanding of gene regulatory mechanisms defining cell identities and cell-fate determination in development and disease. Generally, raw data generated from single-cell Assay for Transposase-Accessible Chromatin sequencing (scATAC-seq) are deposited in repositories that are generally inaccessible due to lack of indepth knowledge of computational programming. Results: We have developed ShinyArchR.UiO, an R-based shiny app, that facilitates scATAC-seq data accessibility and visualization in a user-friendly, interactive and open-source web interface. ShinyArchR.UiO is an application that can streamline collaborative efforts for interpretation of massive chromatin accessibility datasets and allow for open access data sharing for wider audiences. Availability and implementation: https://Github.com/EskelandLab/ShinyArchRUiO and a demo server with a hematopoietic tutorial dataset https://cancell.medisin.uio.no/ShinyArchR.UiO
引用
收藏
页码:834 / 836
页数:3
相关论文
共 15 条
  • [1] ATACAmp: a tool for detecting ecDNA/HSRs from bulk and single-cell ATAC-seq data
    Hansen Cheng
    Wenhao Ma
    Kun Wang
    Han Chu
    Guangchao Bao
    Yu Liao
    Yawen Yuan
    Yixiong Gou
    Liting Dong
    Jian Yang
    Haoyang Cai
    BMC Genomics, 24
  • [2] ATACAmp: a tool for detecting ecDNA/HSRs from bulk and single-cell ATAC-seq data
    Cheng, Hansen
    Ma, Wenhao
    Wang, Kun
    Chu, Han
    Bao, Guangchao
    Liao, Yu
    Yuan, Yawen
    Gou, Yixiong
    Dong, Liting
    Yang, Jian
    Cai, Haoyang
    BMC GENOMICS, 2023, 24 (01)
  • [3] Integrative Analysis of Single-Cell RNA-Seq and ATAC-Seq Data across Treatment Time Points in Pediatric AML
    Wei, Lisa
    Trinh, Diane
    Ries, Rhonda E.
    Jin, Dan
    Corbett, Richard D.
    Smith, Jenny L.
    Furlan, Scott N.
    Meshinchi, Soheil
    Marra, Marco A.
    BLOOD, 2020, 136
  • [4] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Duan, Hongyu
    Li, Feng
    Shang, Junliang
    Liu, Jinxing
    Li, Yan
    Liu, Xikui
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (04) : 917 - 928
  • [5] Simultaneous dimensionality reduction and integration for single-cell ATAC-seq data using deep learning
    Kopp, Wolfgang
    Akalin, Altuna
    Ohler, Uwe
    NATURE MACHINE INTELLIGENCE, 2022, 4 (02) : 162 - +
  • [6] Simultaneous dimensionality reduction and integration for single-cell ATAC-seq data using deep learning
    Wolfgang Kopp
    Altuna Akalin
    Uwe Ohler
    Nature Machine Intelligence, 2022, 4 : 162 - 168
  • [7] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Hongyu Duan
    Feng Li
    Junliang Shang
    Jinxing Liu
    Yan Li
    Xikui Liu
    Interdisciplinary Sciences: Computational Life Sciences, 2022, 14 : 917 - 928
  • [8] BingleSeq: a user-friendly R package for bulk and single-cell RNA-Seq data analysis
    Dimitrov, Daniel
    Gu, Quan
    PEERJ, 2020, 8
  • [9] iS-CellR: a user-friendly tool for analyzing and visualizing single-cell RNA sequencing data
    Patel, Mitulkumar V.
    BIOINFORMATICS, 2018, 34 (24) : 4305 - 4306
  • [10] Selecting and justifying quantitative analysis techniques in single-case research through a user-friendly open-source tool
    Fingerhut, Joelle
    Moeyaert, Mariola
    FRONTIERS IN EDUCATION, 2022, 7