Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero-Moser systems, and KZB equations

被引:0
|
作者
Levin, A. M. [1 ,2 ]
Olshanetsky, M. A. [3 ]
Zotov, A. V. [2 ,4 ,5 ]
机构
[1] Natl Res Univ, Dept Math, Higher Sch Econ, Moscow, Russia
[2] Inst Theoret & Expt Phys, Moscow, Russia
[3] RAS, Kharkevich Inst Informat Transmiss Problems, Moscow, Russia
[4] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
[5] Moscow Inst Phys & Technol, Dolgoprudnyi, Moscow Oblast, Russia
基金
俄罗斯科学基金会;
关键词
elliptic integrable system; finite-order Lie algebra automorphism; Higgs bundle; Knizhnik-Zamolodchikov-Bernard equation; DYNAMICAL R-MATRICES; ZUMINO-WITTEN MODELS; HITCHIN SYSTEMS; OPERATORS;
D O I
10.1134/S0040577916080018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct twisted Calogero-Moser systems with spins as Hitchin systems derived from the Higgs bundles over elliptic curves, where the transition operators are defined by arbitrary finite-order automorphisms of the underlying Lie algebras. We thus obtain a spin generalization of the twisted D'Hoker-Phong and Bordner-Corrigan-Sasaki-Takasaki systems. In addition, we construct the corresponding twisted classical dynamical r-matrices and the Knizhnik-Zamolodchikov-Bernard equations related to the automorphisms of Lie algebras.
引用
收藏
页码:1121 / 1154
页数:34
相关论文
共 7 条