Criteria for unique factorization in integral domains

被引:7
|
作者
Anderson, DD
Chapman, ST
Halter-Koch, F
Zafrullah, M
机构
[1] Trinity Univ, Dept Math, San Antonio, TX 78212 USA
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[3] MTA Teleport, Silver Spring, MD 20905 USA
[4] Karl Franzens Univ Graz, Inst Math, A-8010 Graz, Austria
关键词
D O I
10.1016/S0022-4049(96)00183-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be an integral domain. In this paper, we introduce a sequence of factorization properties which are weaker than the classical UFD criteria. We give several examples of atomic nonfactorial monoids which satisfy these conditions, but show for several classes of integral domains of arithmetical interest that these factorization properties force unique factorization. In particular, we show that if R satisfies any of our properties and is a Krull domain with finite divisor class group, a nonmaximal order in an algebraic number field, or a generalized Cohen-Kaplansky domain, then R in fact must be factorial. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:205 / 218
页数:14
相关论文
共 50 条