Optimal replacement policy for a repairable system with deterioration based on a renewal-geometric process

被引:4
|
作者
Niu, Caiyun [1 ]
Liang, Xiaolin [2 ]
Ge, Bingfeng [1 ]
Tian, Xue [2 ]
Chen, Yingwu [1 ]
机构
[1] Natl Univ Def Technol, Coll Informat Syst & Management, Changsha 410073, Hunan, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Math & Comp Sci, Changsha 410004, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Renewal-geometric process; Delay circuit; Replacement policy; Cost rate;
D O I
10.1007/s10479-016-2133-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The optimal replacement policy is proposed for a new maintenance model of a repairable deteriorating system to minimize the average cost rate throughout the system life cycle. It is assumed that the system undergoes deterioration with an increasing trend of deterioration probability after each repair. More specifically, a novel maintenance model is first presented based on a new defined renewal-geometric process, which splits the operation process into an early renewal process and a late geometric process to characterize such a special deterioration delay. Then, the average cost rate for the new model is formulated according to the renewal-reward theorem. Next, a theorem is presented to derive the theoretical relationships of optimal replacement policies for the geometric-process maintenance model and the new proposed model, respectively. Finally, numerical examples suggest that the optimum values can be determined to minimize the average cost rates.
引用
收藏
页码:49 / 66
页数:18
相关论文
共 50 条