ZERO-TEMPERATURE LIMIT OF THE KAWASAKI DYNAMICS FOR THE ISING LATTICE GAS IN A LARGE TWO-DIMENSIONAL TORUS

被引:7
|
作者
Gois, B. [1 ]
Landim, C. [1 ,2 ]
机构
[1] Inst Matematica Pura & Aplicada, BR-22460 Rio De Janeiro, Brazil
[2] Univ Rouen, CNRS, UMR 6085, F-76801 St Etienne, France
来源
ANNALS OF PROBABILITY | 2015年 / 43卷 / 04期
关键词
Ising model; Kawasaki dynamics; zero-temperature limit; scaling limit; adsorption; Brownian motion; INTERACTING BROWNIAN PARTICLES; CONSERVATIVE DYNAMICS; METASTABILITY; NUCLEATION;
D O I
10.1214/14-AOP930
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the Kawasaki dynamics at inverse temperature beta for the Ising lattice gas on a two-dimensional square of length 2L + 1 with periodic boundary conditions. We assume that initially the particles form a square of length n, which may increase, as well as L, with beta. We show that in a proper time scale the particles form almost always a square and that the center of mass of the square evolves as a Brownian motion when the temperature vanishes.
引用
收藏
页码:2151 / 2203
页数:53
相关论文
共 50 条
  • [1] Dynamics of the two-dimensional directed Ising model: zero-temperature coarsening
    Godreche, C.
    Pleimling, M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,
  • [2] Generalized Zero-Temperature Glauber Dynamics in a Two-Dimensional Square Lattice
    Meng Qing-Kuan
    Feng Dong-Tai
    Gao Xu-Tuan
    Mei Yu-Xue
    CHINESE PHYSICS LETTERS, 2012, 29 (12)
  • [3] Zero-temperature dynamics of Ising models on the triangular lattice
    Wu, CC
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (1-2) : 369 - 373
  • [4] Zero-Temperature Dynamics of Ising Models on the Triangular Lattice
    C. Chris Wu
    Journal of Statistical Physics, 2002, 106 : 369 - 373
  • [5] Clusters and recurrence in the two-dimensional zero-temperature stochastic Ising model
    Camia, F
    De Santis, E
    Newman, CM
    ANNALS OF APPLIED PROBABILITY, 2002, 12 (02): : 565 - 580
  • [6] Zero-temperature dynamics in the two-dimensional axial next-nearest-neighbor Ising model
    Biswas, Soham
    Chandra, Anjan Kumar
    Sen, Parongama
    PHYSICAL REVIEW E, 2008, 78 (04):
  • [7] Critical behavior of the two-dimensional nonequilibrium zero-temperature random field Ising model on a triangular lattice
    Janicevic, Sanja
    Mijatovic, Svetislav
    Spasojevic, Djordje
    PHYSICAL REVIEW E, 2017, 95 (04)
  • [8] Phase transition in a two-dimensional Ising ferromagnet based on the generalized zero-temperature Glauber dynamics
    孟庆宽
    冯东太
    高绪团
    梅玉雪
    Chinese Physics B, 2013, 22 (12) : 465 - 469
  • [9] Phase transition in a two-dimensional Ising ferromagnet based on the generalized zero-temperature Glauber dynamics
    Meng Qing-Kuan
    Feng Dong-Tai
    Gao Xu-Tuan
    Mei Yu-Xue
    CHINESE PHYSICS B, 2013, 22 (12)
  • [10] Zero-temperature coarsening in the two-dimensional long-range Ising model
    Christiansen, Henrik
    Majumder, Suman
    Janke, Wolfhard
    PHYSICAL REVIEW E, 2021, 103 (05)