Spanning a strong digraph by α circuits:: A proof of Gallai's conjecture

被引:9
|
作者
Bessy, Stephane [1 ]
Thomasse, Stephan [1 ]
机构
[1] Univ Montpellier 2, LIRMM, F-34392 Montpellier 5, France
关键词
05C20; 05C38; 05C69; 05C70;
D O I
10.1007/s00493-007-2073-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1963, Tibor Gallai [9] asked whether every strongly connected directed graph D is spanned by a directed circiuits, where alpha is the stability of D. We give a proof of this conjecture.
引用
收藏
页码:659 / 667
页数:9
相关论文
共 50 条
  • [1] Spanning a strong digraph by α circuits: A proof of Gallai’s conjecture
    Stéphane Bessy
    Stéphan Thomassé
    Combinatorica, 2007, 27 : 659 - 667
  • [2] Proof of a conjecture on the gracefulness of a digraph
    Jirimutu
    Xu, Xirong
    Feng, Wei
    Bao, Yulan
    UTILITAS MATHEMATICA, 2010, 81 : 255 - 264
  • [3] A strengthening of Erdos-Gallai Theorem and proof of Woodall's conjecture
    Li, Binlong
    Ning, Bo
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 146 : 76 - 95
  • [4] Covering a strong digraph by a-1 disjoint paths:: A proof of Las Vergnas' conjecture
    Thomassé, SP
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (02) : 331 - 333
  • [5] Proof of Halin's normal spanning tree conjecture
    Pitz, Max
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 246 (01) : 353 - 370
  • [6] Proof of Halin’s normal spanning tree conjecture
    Max Pitz
    Israel Journal of Mathematics, 2021, 246 : 353 - 370
  • [7] A proof of Demailly's strong openness conjecture
    Guan, Qi'an
    Zhou, Xiangyu
    ANNALS OF MATHEMATICS, 2015, 182 (02) : 605 - 616
  • [8] Gallai’s Conjecture on Path Decompositions
    Geng-Hua Fan
    Jian-Feng Hou
    Chui-Xiang Zhou
    Journal of the Operations Research Society of China, 2023, 11 : 439 - 449
  • [9] Gallai's conjecture for outerplanar graphs
    Geng, Xianya
    Fang, Minglei
    Li, Dequan
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2015, 18 (05) : 593 - 598
  • [10] Path decompositions and Gallai's conjecture
    Fan, GH
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 93 (02) : 117 - 125