Path to Stochastic Stability: Comparative Analysis of Stochastic Learning Dynamics in Games

被引:4
|
作者
Jaleel, Hassan [1 ]
Shamma, Jeff S. [2 ]
机构
[1] Lahore Univ Management Sci, Syed Babar Ali Sch Sci & Engn, Dept Elect Engn, Intelligent Machines & Sociotech Syst Lab, Lahore 54792, Pakistan
[2] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div, Robot Intelligent Syst & Control Lab, Thuwal 239556900, Saudi Arabia
关键词
Markov processes; Games; Steady-state; Stability criteria; Noise measurement; Decision making; Transient analysis; Learning in games; multiagent system; stochastic system; SMALL TRANSITION-PROBABILITIES; MARKOV-CHAINS; GENERAL DOMAIN; EXIT PROBLEM; CONVERGENCE; EQUILIBRIUM; METROPOLIS; ALGORITHMS;
D O I
10.1109/TAC.2020.3039485
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stochastic stability is an important solution concept for stochastic learning dynamics in games. However, a limitation of this solution concept is its inability to distinguish between different learning rules that lead to the same steady-state behavior. We identify this limitation and develop a framework for the comparative analysis of the transient behavior of stochastic learning dynamics. We present the framework in the context of two learning dynamics: Log-linear learning (LLL) and Metropolis learning (ML). Although both of these dynamics lead to the same steady-state behavior, they correspond to different behavioral models for decision making. In this article, we propose multiple criteria to analyze and quantify the differences in the short and medium-run behaviors of stochastic dynamics. We derive upper bounds on the expected hitting time of the set of Nash equilibria for both LLL and ML. For the medium to long-run behavior, we identify a set of tools from the theory of perturbed Markov chains that result in a hierarchical decomposition of the state space into collections of states called cycles. We compare LLL and ML based on the proposed criteria and develop invaluable insights into the behavior of the two dynamics.
引用
收藏
页码:5253 / 5268
页数:16
相关论文
共 50 条
  • [1] Learning dynamics in stochastic routing games
    Meigs, Emily
    Parise, Francesca
    Ozdaglar, Asuman
    2017 55TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2017, : 259 - 266
  • [2] LEARNING DYNAMICS IN GAMES WITH STOCHASTIC PERTURBATIONS
    KANIOVSKI, YM
    YOUNG, HP
    GAMES AND ECONOMIC BEHAVIOR, 1995, 11 (02) : 330 - 363
  • [3] Stochastic shortest path games
    Patek, SD
    Bertsekas, DP
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (03) : 804 - 824
  • [4] Stochastic Learning Dynamics and Speed of Convergence in Population Games
    Arieli, Itai
    Young, H. Peyton
    ECONOMETRICA, 2016, 84 (02) : 627 - 676
  • [5] Robustness Of Stochastic Learning Dynamics To Player Heterogeneity In Games
    Jaleel, Hassan
    Abbas, Waseem
    Shamma, Jeff S.
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 5002 - 5007
  • [6] Stochastic stability in spatial games
    Miekisz, J
    JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (1-2) : 99 - 110
  • [7] Stochastic Stability in Spatial Games
    Jacek Miękisz
    Journal of Statistical Physics, 2004, 117 : 99 - 110
  • [8] Stochastic Approximation for Estimating the Price of Stability in Stochastic Nash Games
    Jalilzadeh, Afrooz
    Yousefian, Farzad
    Ebrahimi, Mohammadjavad
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2024, 34 (02):
  • [9] A SAMPLE-PATH APPROACH TO STOCHASTIC GAMES
    BAYKALGURSOY, M
    PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, : 180 - 185
  • [10] Stability and cooperative solution in stochastic games
    Parilina, Elena M.
    Tampieri, Alessandro
    THEORY AND DECISION, 2018, 84 (04) : 601 - 625