The Application of Artificial Intelligence Technique (CNN-Alexnet) in Diagnosing COVID-19 Using Chest X-ray Images

被引:0
|
作者
Muhammed, Maryam [1 ]
Boukar, Moussa Mahamat [1 ]
Aldullahi, Saleh Elyakubu [1 ]
Dane, Senol [2 ]
机构
[1] Nile Univ Nigeria, Fac Nat & Appl Sci, Dept Comp Sci, Abuja, Nigeria
[2] Nile Univ Nigeria, Coll Hlth Sci, Fac Basic Med Sci, Dept Physiol, Abuja, Nigeria
来源
关键词
Artificial Intelligence; Deep learning; Convolutional neural networks; Pandemic; GENDER-RELATED DIFFERENCES; ALEXITHYMIA SCORES; PANDEMIC OUTBREAK; SIMIAN CREASE; SELF-ESTEEM; UNIVERSITY; DEPRESSION; EDUCATION; ANXIETY; SEX;
D O I
暂无
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background: The coronavirus which initially appeared in China in December 2019 was later declared global pandemic in the year 2020. It has caused a devastating effect on daily lives, public health, and the global economy. Early detection of positive cases is overly critical to prevent further spread of the pandemic and to quickly treat affected patients in isolation. Which is why introduction to fast and accurate alternative of diagnosing the virus is very vital. Methods: An AI technique called deep learning which is most applied to analyze visual imagery like radiological images, This AI technique uses convolutional neural networks (CNN) to analyze the images, AlexNet is the CNN model used for this research. Several studies suggest that medical images contain salient information about the Covid-19 virus, which is why applying such advanced artificial intelligence (AI) techniques coupled with radiological imaging can be helpful for the accurate detection of this disease with a huge potential to address the problem of a limited to no specialized physicians in remote areas like Nigeria's most vulnerable regions. Results: Initially, the model gave high accuracy of 97.97%, this was suspected to be overfitting. This was corrected by increasing the dataset and applying cross validation thereby reducing noise by giving a lower accuracy to 85% and also increasing its specificity. Conclusions: The aim of the study was to introduce an alternative way of diagnosing the Covid-19 asides from the PCR that is currently the most popular one, this has been archived by our working system and the waiting time has been reduced from 24-48hours to 58 minutes. Secondly, to identify a suitable model in Deep learning in medical science and to measure the performance and to access the effectiveness of the chosen model Alexnet in terms of accuracy, precision, recall &F1score. We archived this by striking a balance in the high percentile number of the following terms and reducing it to a more believable, reliable, and accurate figure.
引用
收藏
页码:21 / 26
页数:6
相关论文
共 50 条
  • [1] A Novel Method for COVID-19 Diagnosis Using Artificial Intelligence in Chest X-ray Images
    Almalki, Yassir Edrees
    Qayyum, Abdul
    Irfan, Muhammad
    Haider, Noman
    Glowacz, Adam
    Alshehri, Fahad Mohammed
    Alduraibi, Sharifa K.
    Alshamrani, Khalaf
    Basha, Mohammad Abd Alkhalik
    Alduraibi, Alaa
    Saeed, M. K.
    Rahman, Saifur
    HEALTHCARE, 2021, 9 (05)
  • [2] Diagnosing COVID-19 in X-ray Images Using HOG Image Feature and Artificial Intelligence Classifiers
    Kharbat, Faten F.
    Elamsy, Tarik A.
    Hamada, Nuha H.
    ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,
  • [3] COVID-19 Detection on Chest X-ray Images with the Proposed Model Using Artificial Intelligence and Classifiers
    Yildirim, Muhammed
    Eroglu, Orkun
    Eroglu, Yesim
    Cinar, Ahmet
    Cengil, Emine
    NEW GENERATION COMPUTING, 2022, 40 (04) : 1077 - 1091
  • [4] COVID-19 Detection on Chest X-ray Images with the Proposed Model Using Artificial Intelligence and Classifiers
    Muhammed Yildirim
    Orkun Eroğlu
    Yeşim Eroğlu
    Ahmet Çinar
    Emine Cengil
    New Generation Computing, 2022, 40 : 1077 - 1091
  • [5] Analysis of Chest X-Ray Images for the Recognition of COVID-19 Symptoms Using CNN
    Hatamleh, Wesam Atef
    Tarazi, Hussam
    Subbalakshmi, Chatti
    Tiwari, Basant
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [6] Robust Technique to Detect COVID-19 using Chest X-ray Images
    Channa, Asma
    Popescu, Nirvana
    Malik, Najeeb Ur Rehman
    2020 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB), 2020,
  • [7] Artificial Intelligence Based COVID-19 Detection and Classification Model on Chest X-ray Images
    Althaqafi, Turki
    AL-Ghamdi, Abdullah S. AL-Malaise
    Ragab, Mahmoud
    HEALTHCARE, 2023, 11 (09)
  • [8] Chest X-Ray Images to Differentiate COVID-19 from Pneumonia with Artificial Intelligence Techniques
    Islam, Rumana
    Tarique, Mohammed
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2022, 2022
  • [9] CNN Based COVID-19 Prediction from Chest X-ray Images
    Alam, Kazi Nabiul
    Khan, Mohammad Monirujjaman
    2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 486 - 492
  • [10] Prediction of Covid-19 Based on Chest X-Ray Images Using Deep Learning with CNN
    Meem, Anika Tahsin
    Khan, Mohammad Monirujjaman
    Masud, Mehedi
    Aljahdali, Sultan
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 41 (03): : 1223 - 1240