Gravity-driven thin-film flow using a new contact line model

被引:9
|
作者
Billingham, J. [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
thin film flow; moving contact line;
D O I
10.1093/imamat/hxm042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider how a new model for the motion of a contact line, proposed by Shikhmurzaev (1993, Int. J. Multiphase Flow, 19, 589-610), affects predictions for the gravity-driven flow of a thin film down an inclined plane. We find that for sufficiently thin films, the model reduces to Navier slip with the contact angle equal to its static value, while for thicker films the model has a character of its own, with a slip region that becomes larger, the thicker the film and a contact angle that increases as the thickness of the film increases.
引用
收藏
页码:4 / 36
页数:33
相关论文
共 50 条
  • [1] Gravity-driven thin-film flow on a flexible substrate
    Howell, P. D.
    Robinson, J.
    Stone, H. A.
    JOURNAL OF FLUID MECHANICS, 2013, 732 : 190 - 213
  • [2] Gravity-driven thin-film flow on a flexible substrate
    Howell, P.D.
    Robinson, J.
    Stone, H.A.
    Journal of Fluid Mechanics, 2013, 732 : 190 - 213
  • [3] Gravity-driven thin-film flow on a flexible substrate
    Howell, P.D.
    Robinson, J.
    Stone, H.A.
    Journal of Fluid Mechanics, 2013, 732 : 190 - 213
  • [4] Shock transitions in Marangoni gravity-driven thin-film flow
    Münch, A
    NONLINEARITY, 2000, 13 (03) : 731 - 746
  • [5] Steady two-layer gravity-driven thin-film flow
    Alba, Kamran
    Khayat, Roger E.
    Pandher, Ramanjit S.
    PHYSICAL REVIEW E, 2008, 77 (05):
  • [6] Stability of gravity-driven thin-film flow in the presence of an adjacent gas phase
    Kushnir, R.
    Barmak, I.
    Ullmann, A.
    Brauner, N.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2021, 135
  • [7] Gravity-driven thin film flow of an ellis fluid
    Kheyfets, Vitaly O.
    Kieweg, Sarah L.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2013, 202 : 88 - 98
  • [8] A film flow model for analysing gravity-driven, thin wavy fluid films
    Martin, M.
    Defraeye, T.
    Derome, D.
    Carmeliet, J.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2015, 73 : 207 - 216
  • [9] A new elastic instability in gravity-driven viscoelastic film flow
    Priyadarshi, Mamta
    Srita, Kopparthi V.
    Bhaskar, V. V. K. N. Sai
    Khalid, Mohammad
    Subramanian, Ganesh
    Shankar, V.
    PHYSICS OF FLUIDS, 2023, 35 (07)
  • [10] Contact line instability of gravity-driven flow of power-law fluids
    Hu, Bin
    Kieweg, Sarah L.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2015, 225 : 62 - 69