Analysis of Pixels Permutations Based on Discretized Chirikov Map

被引:0
|
作者
Haliuk, Sergiy [1 ]
Krulikovskyi, Oleg [1 ]
Politanskyi, Leonid [1 ]
机构
[1] Yuriy Fedkovych Chernivtsi Natl Univ, Storozhynetska Str 101, UA-58004 Chernovtsy, Ukraine
关键词
Standard Map; Permutation of Pixels; Chaotic Cryptography;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, a study permutations of pixels based on discretized two-dimensional Chirikov map in images with dimensions N x N. Specific properties of map that can be used by an attacker to recover the original image. For images with dimensions N x N the vulnerability of permutations to brute force attacks, and the ability of intruder to restore the original image without setting the value of keys permutations is shown.
引用
收藏
页码:519 / 521
页数:3
相关论文
共 50 条
  • [1] Diffusion and localization for the Chirikov typical map
    Frahm, Klaus M.
    Shepelyansky, Dima L.
    PHYSICAL REVIEW E, 2009, 80 (01):
  • [2] Analysis and design of digital PRNGs based on the discretized sawtooth map
    Alioto, M
    Bernardi, S
    Fort, A
    Rocchi, S
    Vignoli, V
    ICECS 2003: PROCEEDINGS OF THE 2003 10TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-3, 2003, : 427 - 430
  • [3] Analysis and design of digital PRNGs based on the discretized sawtooth map
    Alioto, M., Emirates Telecommunications Corporation (ETISALAT); et al.; Etisalat College of Engineering (ECE); IEEE Circuits and Systems Society (CAS); The Institute of Electrical and Electronics Engineers (IEEE); University of Sharjah (UOS) (Institute of Electrical and Electronics Engineers Inc.):
  • [4] The Study of the Modified Chirikov Map
    Karimov, Artur I.
    Butusov, Denis N.
    Rybin, Vyacheslav G.
    Karimov, Timur I.
    PROCEEDINGS OF 2017 XX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM), 2017, : 341 - 344
  • [5] Splitting of Separatrices for the Chirikov Standard Map
    V. F. Lazutkin
    Journal of Mathematical Sciences, 2005, 128 (2) : 2687 - 2705
  • [6] CLASSICAL AND SEMICLASSICAL EIGENSTATES OF THE CHIRIKOV MAP
    CHANG, SJ
    PEREZ, G
    PHYSICAL REVIEW A, 1990, 42 (10): : 5898 - 5911
  • [7] Ulam method for the Chirikov standard map
    K. M. Frahm
    D. L. Shepelyansky
    The European Physical Journal B, 2010, 76 : 57 - 68
  • [8] Ulam method for the Chirikov standard map
    Frahm, K. M.
    Shepelyansky, D. L.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 76 (01): : 57 - 68
  • [9] Dynamical characteristics of discretized chaotic permutations
    Masuda, N
    Aihara, K
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (10): : 2087 - 2103
  • [10] Poincare recurrences and Ulam method for the Chirikov standard map
    Frahm, K. M.
    Shepelyansky, D. L.
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (07):