Dynamic Variable Speed Limit Zones Allocation Using Distributed Multi-Agent Reinforcement Learning

被引:6
|
作者
Kusic, Kresimir [1 ]
Ivanjko, Edouard [1 ]
Vrbanic, Filip [1 ]
Greguric, Martin [1 ]
Dusparic, Ivana [2 ]
机构
[1] Univ Zagreb, Fac Transport & Traff Sci, Dept Intelligent Transport Syst, Zagreb, Croatia
[2] Trinity Coll Dublin, Sch Comp Sci & Stat, Dublin, Ireland
关键词
TRAFFIC FLOW; CONGESTION;
D O I
10.1109/ITSC48978.2021.9564739
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variable Speed Limit (VSL) has been proven to be an effective motorway traffic control strategy. However, VSL strategies with static VSL zones may operate suboptimally under traffic conditions with spatially and temporally varying congestion intensities. To enable efficient operation of the VSL system under varying congestion intensities, we propose a novel Distributed Spatio-Temporal multi-agent VSL (DWL-ST-VSL) strategy with dynamic adjustment of the VSL zone configuration. According to the current traffic conditions, DWL-ST-VSL continuously adjusts not only the speed limits but also the length and position of the VSL zones. Each agent uses Reinforcement-Learning (RL) to optimize two goals: maximizing travel speed and resolving congestion. Cooperation between VSL agents is performed using the Distributed W-Learning (DWL) algorithm. We evaluate the proposed strategy using two collaborative agents controlling two segments upstream of the congestion area in SUMO microscopic simulation on two traffic scenarios with medium and high traffic load. The results show a significant improvement in traffic conditions compared to the baselines (W-learning based VSL and simple proportional speed controller) with static VSL zones.
引用
收藏
页码:3238 / 3245
页数:8
相关论文
共 50 条
  • [1] Extended Variable Speed Limit control using Multi-agent Reinforcement Learning
    Kusic, Kresimir
    Dusparic, Ivana
    Gueriau, Maxime
    Greguric, Martin
    Ivanjko, Edouard
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [2] Cooperative Multi-Agent Reinforcement Learning for Large Scale Variable Speed Limit Control
    Zhang, Yuhang
    Quinones-Grueiro, Marcos
    Barbour, William
    Zhang, Zhiyao
    Scherer, Joshua
    Biswas, Gautam
    Work, Daniel
    2023 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING, SMARTCOMP, 2023, : 149 - 156
  • [3] Dynamic distributed constraint optimization using multi-agent reinforcement learning
    Shokoohi, Maryam
    Afsharchi, Mohsen
    Shah-Hoseini, Hamed
    SOFT COMPUTING, 2022, 26 (08) : 3601 - 3629
  • [4] Dynamic distributed constraint optimization using multi-agent reinforcement learning
    Maryam Shokoohi
    Mohsen Afsharchi
    Hamed Shah-Hoseini
    Soft Computing, 2022, 26 : 3601 - 3629
  • [5] Variable Speed Limit Control for the Motorway-Urban Merging Bottlenecks Using Multi-Agent Reinforcement Learning
    Fang, Xuan
    Peter, Tamas
    Tettamanti, Tamas
    SUSTAINABILITY, 2023, 15 (14)
  • [6] Coordinated Variable Speed Limit Control for Freeway Based on Multi-Agent Deep Reinforcement Learning
    Yu, Rongjie
    Xu, Ling
    Zhang, Ruici
    Tongji Daxue Xuebao/Journal of Tongji University, 2024, 52 (07): : 1089 - 1098
  • [7] Multi-Agent Deep Reinforcement Learning Based Distributed Resource Allocation
    Urmonov, Odilbek
    Kim, HyungWon
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [8] Multi-agent Deep Reinforcement Learning for Task Allocation in Dynamic Environment
    Ben Noureddine, Dhouha
    Gharbi, Atef
    Ben Ahmed, Samir
    ICSOFT: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES, 2017, : 17 - 26
  • [9] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920
  • [10] Distributed dynamic pricing of multiple perishable products using multi-agent reinforcement learning
    Qiao, Wenchuan
    Huang, Min
    Gao, Zheming
    Wang, Xingwei
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237