INDEPENDENCE COMPLEXES OF STRONGLY ORDERABLE GRAPHS

被引:0
|
作者
Yetim, Mehmet Akif [1 ]
机构
[1] Suleyman Demirel Univ, Dept Math, Isparta, Turkey
关键词
Independence complex; strongly orderable; strongly chordal; chordal bipartite; convex bipartite; homotopy type; biclique vertex partition; CHORDAL BIPARTITE;
D O I
10.31801/cfsuasmas.874855
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for any finite strongly orderable (generalized strongly chordal) graph G, the independence complex Ind(G) is either contractible or homotopy equivalent to a wedge of spheres of dimension at least bp(G) - 1, where bp(G) is the biclique vertex partition number of G. In particular, we show that if G is a chordal bipartite graph, then Ind(G) is either contractible or homotopy equivalent to a sphere of dimension at least bp(G) - 1.
引用
收藏
页码:445 / 455
页数:11
相关论文
共 50 条