FINITE MASS SOLUTIONS FOR A NONLOCAL INHOMOGENEOUS DISPERSAL EQUATION

被引:5
|
作者
Cortazar, Carmen [1 ]
Elgueta, Manuel [1 ]
Garcia-Melian, Jorge [2 ,3 ]
Martinez, Salome [4 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Matemat, Fac Matemat, Santiago, Chile
[2] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Spain
[3] Univ La Laguna, Inst Univ Estudios Avanzados IUdEA Fis Atom Mol &, San Cristobal la Laguna 38203, Spain
[4] Univ Chile, Dept Ingn Matemat, Ctr Modelamiento Matemat, UMI CNRS UChile 2807,Fac Ciencias Fis & Matemat, Santiago, Chile
关键词
Inhomogeneous dispersal; nonlocal; integro-differential equations; MONOSTABLE EQUATIONS; ASYMPTOTIC-BEHAVIOR; SPREADING SPEEDS; EXISTENCE;
D O I
10.3934/dcds.2015.35.1409
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the asymptotic behavior of the following nonlocal inhomogeneous dispersal equation u(t)(x, t) = integral(R) J (x-y/g(y)) u(y, t)/g(y)dy - u(x, t) x is an element of R, t > 0, where J is an even, smooth, probability density, and g, which accounts for a dispersal distance, is continuous and positive. We prove that if g(vertical bar y vertical bar) similar to a vertical bar y vertical bar as vertical bar y vertical bar -> +infinity for some 0 < a < 1, there exists a unique (up to normalization) positive stationary solution, which is in L-1(R). On the other hand, if g(vertical bar y vertical bar) similar to vertical bar y vertical bar(p), with p > 2 there are no positive stationary solutions. We also establish the asymptotic behavior of the solutions of the evolution problem in both cases.
引用
收藏
页码:1409 / 1419
页数:11
相关论文
共 50 条