Membrane-based separations can mitigate the capital- and energy-intensive challenges associated with traditional thermally driven processes. To further push the boundary of gas separations, mixed matrix membranes (MMMs) have been extensively exploited; however, identifying an optimal nanofiller to boost the separation performance of MMMs beyond Robeson permeability-selectivity upper bounds remains an ongoing challenge. Here, a new class of MMMs based on pyrazine-fused crystalline porous graphitic frameworks (PGFs) is reported. At a loading of 6 wt % PGFs, the MMMs surpass the current H-2/CH4 Robeson upper bound, ideally suited for applications such as H-2 regeneration. In addition, the fabricated MMMs exhibit appealing CO2 separation performance, closely approaching the current Robeson upper bounds for CO2 separation. Compared with the pristine polymeric membranes, the PGF-based MMMs display a record-high enhancement of gas permeability over 120% while maintaining intrinsic gas selectivities. Highlighting the crucial role of the crystallinity of nanofillers, this study demonstrates a facile and effective approach in formulating high-performance MMMs, complementing state-of-the-art membrane formation processes. The design principles open the door to energy-efficient separations of gas mixtures with enhanced productivity compatible with the current membrane manufacturing.