On uniqueness in the inverse conductivity problem with local data

被引:97
|
作者
Isakov, Victor [1 ]
机构
[1] Wichita State Univ, Wichita, KS 67260 USA
基金
美国国家科学基金会;
关键词
inverse problems; inverse scattering problems;
D O I
10.3934/ipi.2007.1.95
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Dirichlet-to-Neumann map given on an arbitrary part of the boundary of a three-dimensional domain with zero Dirichlet (or Neumann) data on the remaining (spherical or plane) part of the boundary uniquely determines conductivity or potential coefficients. This is the first uniqueness result for the Calderon problem with zero data on unaccessible part of the boundary. Proofs use some modification of the method of complex geometrical solutions due to Calderon-Sylvester-Uhlmann.
引用
收藏
页码:95 / 105
页数:11
相关论文
共 50 条