Monte Carlo estimates of natural variation in HIV infection

被引:40
|
作者
Heffernan, JM [1 ]
Wahl, LM [1 ]
机构
[1] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Monte Carlo simulation; HIV; CD4+cell count; viral load; variability in infection;
D O I
10.1016/j.jtbi.2005.03.002
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We describe a Monte Carlo simulation of the within-host dynamics of human immunodeficiency virus I (HIV-1). The simulation proceeds at the level of individual T-cells and virions in a small volume of plasma, thus capturing the inherent stochasticity in viral replication, mutation and T-cell infection. When cell lifetimes are distributed exponentially in the Monte Carlo approach, our simulation results are in perfect agreement with the predictions of the corresponding systems of differential equations from the literature. The Monte Carlo model, however, uniquely allows us to estimate the natural variability in important parameters such as the T-cell count, viral load, and the basic reproductive ratio, in both the presence and absence of drug therapy. The simulation also yields the probability that an infection will not become established after exposure to a viral inoculum of a given size. Finally, we extend the Monte Carlo approach to include distributions of cell lifetimes that are less-dispersed than exponential. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:137 / 153
页数:17
相关论文
共 50 条
  • [1] Natural variation in HIV infection: Monte Carlo estimates that include CD8 effector cells
    Heffernan, Jane M.
    Wahl, Lindi M.
    JOURNAL OF THEORETICAL BIOLOGY, 2006, 243 (02) : 191 - 204
  • [2] Optimisation and parallelisation strategies for Monte Carlo simulation of HIV infection
    Hecquet, D.
    Ruskin, H. J.
    Crane, M.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (05) : 691 - 699
  • [3] Error estimates in Monte Carlo and Quasi-Monte Carlo integration
    Lazopouls, A
    ACTA PHYSICA POLONICA B, 2004, 35 (11): : 2617 - 2632
  • [4] A convergence criterion for the Monte Carlo estimates
    Ata, Mustafa Y.
    SIMULATION MODELLING PRACTICE AND THEORY, 2007, 15 (03) : 237 - 246
  • [5] Denoising Monte Carlo sensitivity estimates
    Kang, Wanmo
    Kim, Kyoung-Kuk
    Shin, Hayong
    OPERATIONS RESEARCH LETTERS, 2012, 40 (03) : 195 - 202
  • [6] Obtaining Uncertainty Estimates Compatible with Estimates of Monte Carlo Method
    Zakharov, Igor
    Botsiura, Olesia
    Neyezhmakov, Pavel
    2019 PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON MEASUREMENT (MEASUREMENT 2019), 2019, : 47 - 50
  • [7] A Markov Chain Monte Carlo Approach to Estimate AIDS after HIV Infection
    Apenteng, Ofosuhene O.
    Ismail, Noor Azina
    PLOS ONE, 2015, 10 (07):
  • [8] A Monte Carlo simulation of advanced HIV disease: Application to prevention of CMV infection
    Paltiel, AD
    Scharfstein, JA
    Seage, GR
    Losina, E
    Goldie, SJ
    Weinstein, MC
    Craven, DE
    Freedberg, KA
    MEDICAL DECISION MAKING, 1998, 18 (02) : S93 - S105
  • [9] 'Path' and 'time' estimates in the Monte Carlo method
    Burmistrov, AV
    Mikhailov, GA
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 1999, 14 (03) : 221 - 236
  • [10] Investigation and improvement of biased Monte Carlo estimates
    Lotova, G. Z.
    Mikhailov, G. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2015, 55 (01) : 8 - 18