On the a.s. convergence of certain random series to a fractional random field in D′(Rd)

被引:0
|
作者
Medina, JM
Frías, BC
机构
[1] Univ Buenos Aires, FI UBA, Dpto Matemat & LIPSIRN, RA-1012 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
关键词
almost sure convergence; Karhunen-Loeve expansions; Schwartz distributions; long-range dependence; fractional random fields; fractional integrals;
D O I
10.1016/j.spl.2005.04.029
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the almost sure convergence in the sense of Schwartz distributions of certain random series. This result is useful to construct some type of fractional random fields. These series resemble the Karhunen-Loeve expansions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 49
页数:11
相关论文
共 50 条
  • [1] On a.s. unconditional convergence of random series in Banach spaces
    Kwapien, S
    Tarieladze, V
    STOCHASTIC INEQUALITIES AND APPLICATIONS, 2003, 56 : 71 - 75
  • [2] A.s. convergence rate for Mandelbrot's cascade in a random environment
    Li, Yingqiu
    Deng, Lin
    Wei, Yushao
    STOCHASTIC MODELS, 2024,
  • [3] ON CHARACTERIZATION OF A.S. CONVERGENCE OF ALL CONDITIONINGS FOR SEQUENCES OF RANDOM VARIABLES
    Paszkiewicz, Adam
    DEMONSTRATIO MATHEMATICA, 2012, 45 (02) : 455 - 462
  • [4] On almost certain convergence of double series of random elements and the rate of convergence of tail series
    Parker, Robert
    Rosalsky, Andrew
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2021, 93 (02) : 252 - 278
  • [5] ALMOST CERTAIN CONVERGENCE OF VECTOR RANDOM SERIES WITH BOUNDED MULTIPLIERS
    MUSIAL, K
    RYLL-NARDZEWSKI, C
    WOYCZYNS.WA
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 279 (07): : 225 - 228
  • [6] A.s. convergence for infinite colour Polya urns associated with random walks
    Janson, Svante
    ARKIV FOR MATEMATIK, 2021, 59 (01): : 87 - 123
  • [7] A.s. convergence rate for a supercritical branching processes with immigration in a random environment
    Li, Yingqiu
    Huang, Xulan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (03) : 826 - 839
  • [8] CONVERGENCE OF SCALED RANDOM SAMPLES IN RD
    KINOSHITA, K
    RESNICK, SI
    ANNALS OF PROBABILITY, 1991, 19 (04): : 1640 - 1663
  • [9] CERTAIN PROPERTIES OF RANDOM SERIES
    ANTONOV, SN
    RYABININ, AA
    MATHEMATICAL NOTES, 1979, 25 (1-2) : 160 - 163
  • [10] DIVERGENCE OF A CERTAIN RANDOM SERIES
    KOOPMANS, LH
    PATHAK, PK
    MARTIN, NM
    QUALLS, CR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A238 - A238