A Multi-modal Moving Object Detection Method Based on GrowCut Segmentation

被引:0
|
作者
Zhang, Xiuwei [1 ]
Zhang, Yanning [1 ]
Maybank, Stephen John [2 ]
Liang, Jun [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian, Peoples R China
[2] Birkbeck Coll, Dept Comp Sci & Informat Syst, London, England
关键词
moving object detection; thermal images; visible light images; GrowCut segmentation; FUSION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Commonly-used motion detection methods, such as background subtraction, optical flow and frame subtraction are all based on the differences between consecutive image frames. There are many difficulties, including similarities between objects and background, shadows, low illumination, thermal halo. Visible light images and thermal images are complementary. Many difficulties in motion detection do not occur simultaneously in visible and thermal images. The proposed multimodal detection method combines the advantages of multi-modal image and GrowCut segmentation, overcomes the difficulties mentioned above and works well in complicated outdoor surveillance environments. Experiments showed our method yields better results than commonly-used fusion methods.
引用
收藏
页码:213 / 218
页数:6
相关论文
共 50 条
  • [1] Multi-Modal Fusion for Moving Object Detection in Static and Complex Backgrounds
    Jiang, Huali
    Li, Xin
    TRAITEMENT DU SIGNAL, 2023, 40 (05) : 1941 - 1950
  • [2] A Quantitative Validation of Multi-Modal Image Fusion and Segmentation for Object Detection and Tracking
    LaHaye, Nicholas
    Garay, Michael J.
    Bue, Brian D.
    El-Askary, Hesham
    Linstead, Erik
    REMOTE SENSING, 2021, 13 (12)
  • [3] Research on 3D Object Detection Method Based on Multi-Modal Fusion
    Tian, Feng
    Zong, Neili
    Liu, Fang
    Lu, Yuanyuan
    Liu, Chao
    Jiang, Wenwen
    Zhao, Ling
    Han, Yuxiang
    Computer Engineering and Applications, 2024, 60 (13) : 113 - 123
  • [4] A Multi-Modal System for Road Detection and Segmentation
    Hu, Xiao
    Rodriguez F, Sergio A.
    Gepperth, Alexander
    2014 IEEE INTELLIGENT VEHICLES SYMPOSIUM PROCEEDINGS, 2014, : 1365 - 1370
  • [5] Multi-modal Queried Object Detection in the Wild
    Xu, Yifan
    Zhang, Mengdan
    Fu, Chaoyou
    Chen, Peixian
    Yang, Xiaoshan
    Li, Ke
    Xu, Changsheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [6] Deep Multi-modal Object Detection for Autonomous Driving
    Ennajar, Amal
    Khouja, Nadia
    Boutteau, Remi
    Tlili, Fethi
    2021 18TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2021, : 7 - 11
  • [7] Multi-modal object detection via transformer network
    Liu, Wenbing
    Wang, Haibo
    Gao, Quanxue
    Zhu, Zhaorui
    IET IMAGE PROCESSING, 2023, 17 (12) : 3541 - 3550
  • [8] Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges
    Feng, Di
    Haase-Schutz, Christian
    Rosenbaum, Lars
    Hertlein, Heinz
    Glaser, Claudius
    Timm, Fabian
    Wiesbeck, Werner
    Dietmayer, Klaus
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (03) : 1341 - 1360
  • [9] RGB-D Salient Object Detection Method Based on Multi-Modal Fusion and Contour Guidance
    Peng, Yanbin
    Feng, Mingkun
    Zheng, Zhijun
    IEEE ACCESS, 2023, 11 : 145217 - 145230
  • [10] Multi-modal cooperative moving objects detection based on F-BDEF
    Zhang Xiu-Wei
    Zhang Yan-Ning
    Liang Jun
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2015, 34 (05) : 619 - 629