Ruttier obstacle classification by use of fractional B-spline wavelets and moments

被引:0
|
作者
Discant, Anca [1 ]
Emerich, Simina [1 ]
Lupu, Eugen [1 ]
Rogozan, Alexandrina. [1 ]
Bensrhair, Abdelaziz [1 ]
机构
[1] Tech Univ Cluj Napoca, Dept Commun, Cluj Napoca, Romania
关键词
road vehicle; object recognition; spline function; wavelet transform;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Applications of wavelet analysis are widespread and cover many fields of scientific research including image processing, classification and recognition. In addition, the mathematical concept of moments has been used for many years in pattern recognition and image processing. We present a new discovered family of splines, named fractional B-splines which we used as mother wavelet functions. The resulted fractional B-spline wavelets constitute a part of the features vector used in our ruttier obstacle classification system. We compared different recognition rates obtained by the use of different mother wavelet functions, but in order to improve the recognition rates, we added first order statistics features and the seven moments of Hu. The artificial vision systems was developed having as model the human system, and therefore the objects recognition task is reduced to a classification using features extracted from images. In our case, the features vector is formed by wavelet transform of fractional B-splines and seven statistics features, followed by the seven moments of Hu.
引用
收藏
页码:2664 / 2671
页数:8
相关论文
共 50 条
  • [1] Wavelets and moments for obstacle classification
    Apatean, Arica
    Emerich, Simina
    Lupu, Eugen
    Alexandrina, Rogozan
    Bensrhair, Abdelaziz
    2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 882 - +
  • [2] Numerical solution of fractional differential equations by semiorthogonal B-spline wavelets
    Liu, Can
    Zhang, Xinming
    Wu, Boying
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 2697 - 2710
  • [3] A new approach of B-spline wavelets to solve fractional differential equations
    Elahi, Abdollah
    Irandoust-pakchin, Safar
    Rahimi, Asghar
    Abdi-mazraeh, Somaiyeh
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 136
  • [4] The Hilbert Transform of B-Spline Wavelets
    Yu, Bo
    Yang, Xiuzhu
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 693 - 697
  • [5] Non-equispaced B-spline wavelets
    Jansen, Maarten
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (06)
  • [6] Object recognition using B-Spline wavelets
    Tieng, QM
    Boles, WW
    ISSPA 96 - FOURTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, PROCEEDINGS, VOLS 1 AND 2, 1996, : 353 - 356
  • [7] Curve modeling with constrained B-spline wavelets
    Li, DG
    Qin, KH
    Sun, HQ
    COMPUTER AIDED GEOMETRIC DESIGN, 2005, 22 (01) : 45 - 56
  • [8] Structural Diagnostics of Composite Beams Using Optimally Selected Fractional B-spline Wavelets
    Katunin, Andrzej
    Przystalka, Piotr
    INTELLIGENT SYSTEMS IN TECHNICAL AND MEDICAL DIAGNOSTICS, 2014, 230 : 475 - 486
  • [9] The Estimation Of Glottal Closure Instants In Voiced Speech Using Fractional B-Spline Wavelets
    Emerich, Simina
    Lupu, Eugen
    Apatean, Anca
    ANALYSIS OF BIOMEDICAL SIGNALS AND IMAGES, 2008, : 537 - 540
  • [10] The method of moments for solution of second kind Fredholm integral equations based on B-spline wavelets
    Maleknejad, K.
    Sahlan, M. Nosrati
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (07) : 1602 - 1616