Global observer design for Navier-Stokes equations in 2D

被引:2
|
作者
Zayats, Mykhaylo [1 ]
Fridman, Emilia [2 ]
Zhuk, Sergiy [1 ]
机构
[1] IBM Res Europe, Dublin, Ireland
[2] Tel Aviv Univ, Dept Elect Engn Syst, Tel Aviv, Israel
关键词
NONLINEAR DISSIPATIVE SYSTEMS; FINITE DETERMINING PARAMETERS; FEEDBACK-CONTROL;
D O I
10.1109/CDC45484.2021.9683275
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider Navier-Stokes equations on a rectangle with periodic boundary conditions, and known input. Given continuous measurements as averages of NSE' solution over a set of squares we design a globally converging observer for NSE by relying upon Lyapunov method: we propose a parametric LMI for determining observer's gain and size of squares, required for the global convergence. We illustrate the numerical efficacy of our algorithm by applying it to estimate states of NSE with Kolmogorov forcing.
引用
收藏
页码:1862 / 1867
页数:6
相关论文
共 50 条
  • [1] Detectability and global observer design for 2D Navier-Stokes equations with uncertain inputs
    Zhuk, Sergiy
    Zayats, Mykhaylo
    Fridman, Emilia
    AUTOMATICA, 2023, 153
  • [2] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (03): : 271 - 274
  • [3] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1999, 127 (04): : 473 - 517
  • [4] A note on 2D Navier-Stokes equations
    Fan, Jishan
    Ozawa, Tohru
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (06):
  • [5] 2D constrained Navier-Stokes equations
    Brzezniak, Zdzislaw
    Dhariwal, Gaurav
    Mariani, Mauro
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (04) : 2833 - 2864
  • [6] UPPER SEMICONTINUITY OF GLOBAL ATTRACTORS FOR 2D NAVIER-STOKES EQUATIONS
    Zhao, Caidi
    Duan, Jinqiao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (03):
  • [7] On whether zero is in the global attractor of the 2D Navier-Stokes equations
    Foias, Ciprian
    Jolly, Michael S.
    Yang, Yong
    Zhang, Bingsheng
    NONLINEARITY, 2014, 27 (11) : 2755 - 2770
  • [8] Global classical solutions to the 2D compressible Navier-Stokes equations with vacuum
    Ding, Shijin
    Huang, Bingyuan
    Liu, Xiaoling
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
  • [9] The existence of global attractors for 2D Navier-Stokes equations in Hk spaces
    Yin Di Zhang
    Ling Yu Song
    Tian Ma
    Acta Mathematica Sinica, English Series, 2009, 25
  • [10] Feedback stabilization for the 2D Navier-Stokes equations
    Fursikov, AV
    NAVIER-STOKES EQUATIONS: THEORY AND NUMERICAL METHODS, 2002, 223 : 179 - 196