On consecutive values of random completely multiplicative functions

被引:6
|
作者
Najnudel, Joseph [1 ]
机构
[1] Univ Bristol, Bristol, Avon, England
来源
关键词
random multiplicative function; empirical distribution; limit theorem; Chowla conjecture; MEAN-VALUES; INTEGERS; CHOWLA;
D O I
10.1214/20-EJP456
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we study the behavior of consecutive values of random completely multiplicative functions (X-n)(n >= 1) whose values are i.i.d. at primes. We prove that for X-2 uniform on the unit circle, or uniform on the set of roots of unity of a given order, and for fixed k >= 1, Xn+1,..., Xn+k are independent if n is large enough. Moreover, with the same assumption, we prove the almost sure convergence of the empirical measure N-1 Sigma(N)(n=1) (delta)(Xn+1,...,X-n(+k)) when N goes to infinity, with an estimate of the rate of convergence. At the end of the paper, we also show that for any probability distribution on the unit circle followed by X-2, the empirical measure converges almost surely when k = 1.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] On the variations of completely multiplicative functions at consecutive arguments
    De Koninck, Jean-Marie
    Katai, Imre
    Bui Minh Phong
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (1-2): : 219 - 230
  • [2] On Equal Consecutive Values of Multiplicative Functions
    Mangerel, Alexander P.
    DISCRETE ANALYSIS, 2024,
  • [3] ON MEAN VALUES OF RANDOM MULTIPLICATIVE FUNCTIONS
    Lau, Yuk-Kam
    Tenenbaum, Gerald
    Wu, Jie
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (02) : 409 - 420
  • [4] On completely multiplicative functions whose values are roots of unity
    Bui Minh Phong
    Acta Mathematica Hungarica, 2006, 113 : 63 - 71
  • [5] On completely multiplicative functions whose values are roots of unity
    Phong, B. M.
    ACTA MATHEMATICA HUNGARICA, 2006, 113 (1-2) : 63 - 71
  • [6] COMPLETELY MULTIPLICATIVE FUNCTIONS TAKING VALUES IN {-1,1}
    Borwein, Peter
    Choi, Stephen K. K.
    Coons, Michael
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (12) : 6279 - 6291
  • [7] Completely multiplicative functions
    Dearden, B
    AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (08): : 773 - 773
  • [8] Foldings of completely multiplicative functions
    Puchta, JC
    Spilker, J
    ARCHIV DER MATHEMATIK, 1995, 65 (06) : 516 - 523
  • [9] On multiplicative functions on consecutive integers
    L. Germán
    I. Kátai
    Lithuanian Mathematical Journal, 2010, 50 : 43 - 53