Cantor Set Arithmetic

被引:20
|
作者
Athreya, Jayadev S. [1 ]
Reznick, Bruce [2 ]
Tyson, Jeremy T. [2 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2019年 / 126卷 / 01期
关键词
MSC: Primary 28A80; Secondary; 11K55; SUMS;
D O I
10.1080/00029890.2019.1528121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every element u of can be written in the form , where x, y are elements of the Cantor set C. In particular, every real number between zero and one is the product of three elements of the Cantor set. On the other hand, the set of real numbers v that can be written in the form v = xy with x and y in C is a closed subset of with Lebesgue measure strictly between and . We also describe the structure of the quotient of C by itself, that is, the image of under the function x/y.
引用
收藏
页码:4 / 17
页数:14
相关论文
共 50 条
  • [1] ON THE ARITHMETIC STRUCTURE OF RATIONAL NUMBERS IN THE CANTOR SET
    Shparlinski, Igor E.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (01) : 22 - 27
  • [2] On arithmetic in the Cantor-Lukasiewicz fuzzy set theory
    Hájek, P
    ARCHIVE FOR MATHEMATICAL LOGIC, 2005, 44 (06) : 763 - 782
  • [3] On arithmetic in the Cantor- Łukasiewicz fuzzy set theory
    Petr Hájek
    Archive for Mathematical Logic, 2005, 44 : 763 - 782
  • [4] On arithmetic properties of Cantor sets
    Lu Cui
    Minghui Ma
    ScienceChina(Mathematics), 2022, 65 (10) : 2035 - 2060
  • [5] On arithmetic properties of Cantor sets
    Lu Cui
    Minghui Ma
    Science China Mathematics, 2022, 65 : 2035 - 2060
  • [6] On arithmetic properties of Cantor sets
    Cui, Lu
    Ma, Minghui
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (10) : 2035 - 2060
  • [7] On the arithmetic sums of Cantor sets
    Eroglu, Kemal Ilgar
    NONLINEARITY, 2007, 20 (05) : 1145 - 1161
  • [8] CANTOR SET SELECTORS
    GUTEV, V
    NEDEV, S
    PELANT, J
    VALOV, V
    TOPOLOGY AND ITS APPLICATIONS, 1992, 44 (1-3) : 163 - 166
  • [9] SUBSETS OF THE CANTOR SET
    HATZENBUHLER, JP
    SMITH, M
    AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (04): : 279 - 279
  • [10] AN INTERESTING CANTOR SET
    COPPEL, WA
    AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (07): : 456 - 460