Structural Identification Using Computer Vision-Based Bridge Health Monitoring

被引:88
|
作者
Khuc, Tung [1 ,2 ]
Catbas, F. Necati [3 ,4 ]
机构
[1] Natl Univ Civil Engn, Dept Bridge & Highways Engn, 55 Giai Phong St, Hanoi 100000, Vietnam
[2] Univ Cent Florida, 4000 Cent Florida Blvd, Orlando, FL 32816 USA
[3] Univ Cent Florida, Dept Civil Environm & Construct Engn, 4000 Cent Florida Blvd, Orlando, FL 32816 USA
[4] Bogazici Univ, TR-34342 Istanbul, Turkey
基金
美国国家科学基金会;
关键词
VEHICLE DETECTION; SYSTEM-IDENTIFICATION; INFLUENCE LINES; DISPLACEMENT; CLASSIFICATION; TRACKING; SENSOR;
D O I
10.1061/(ASCE)ST.1943-541X.0001925
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents a new structural identification (St-Id) framework along with a damage indicator, displacement unit influence surface using computer vision-based measurements for bridge health monitoring. Unit influence surface (UIS) of a certain response (e.g.,displacement, strain) at a measurement location on a beam-type or plate-type structure (e.g.,single-span or multispan bridge with its deck) is defined as a response function of the unit load with respect to the any given location of the unit load on that structure. The novel aspect of this paper is a framework integrating vehicle load (input) modeling using computer vision and the development of a new damage indicator, UIS, using image-based structural identification. This framework is demonstrated on the large-scale bridge model in the University of Central Florida Structures Laboratory for verification and validation. The UIS damage indicators successfully identified the simulated damage on the bridge model, including damage detection and damage localization.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A Vision for Vision-based Technologies for Bridge Health Monitoring
    Catbas, N.
    Dong, C. Z.
    Celik, O.
    Khuc, T.
    MAINTENANCE, SAFETY, RISK, MANAGEMENT AND LIFE-CYCLE PERFORMANCE OF BRIDGES, 2018, : 54 - 62
  • [2] Computer Vision-Based Bridge Inspection and Monitoring: A Review
    Luo, Kui
    Kong, Xuan
    Zhang, Jie
    Hu, Jiexuan
    Li, Jinzhao
    Tang, Hao
    SENSORS, 2023, 23 (18)
  • [3] Computer Vision-Based Real-Time Identification of Vehicle Loads for Structural Health Monitoring of Bridges
    Yang, Jiaxin
    Bao, Yan
    Sun, Zhe
    Meng, Xiaolin
    SUSTAINABILITY, 2024, 16 (03)
  • [4] On the computer vision-based approach for output-only wave-based structural identification and health monitoring
    Hosseinzadeh, Ali Zare
    di Scalea, Francesco Lanza
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS XVII, 2023, 12488
  • [5] Review on computer vision-based inspection and monitoring for bridge cables
    Ji, Wei
    Luo, Ke
    Luo, Kui
    MEASUREMENT, 2025, 248
  • [6] A review of computer vision-based structural health monitoring at local and global levels
    Dong, Chuan-Zhi
    Catbas, F. Necati
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2021, 20 (02): : 692 - 743
  • [7] Review of Computer Vision-based Structural Displacement Monitoring
    Ye X.-W.
    Dong C.-Z.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2019, 32 (11): : 21 - 39
  • [8] Computer Vision-Based Structural Displacement Monitoring and Modal Identification with Subpixel Localization Refinement
    Liu, Tao
    Lei, Yu
    Mao, Yibing
    ADVANCES IN CIVIL ENGINEERING, 2022, 2022
  • [9] Robust Vision-Based Approaches for Structural Health Monitoring
    Jahanshahi, M. R.
    Masri, S. F.
    STRUCTURAL HEALTH MONITORING 2011: CONDITION-BASED MAINTENANCE AND INTELLIGENT STRUCTURES, VOL 2, 2013, : 2252 - 2259
  • [10] Paired Vision-based Structural Health Monitoring System
    Jeon, Hae-Min
    Lee, Seung-Mok
    Choi, Seong-Han
    Myung, Hyun
    INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2010), 2010, : 2472 - 2475