Quantum criticality in the SO(5) bilinear-biquadratic Heisenberg chain

被引:20
|
作者
Alet, F. [1 ]
Capponi, S. [1 ]
Nonne, H. [2 ]
Lecheminant, P. [2 ]
McCulloch, I. P. [3 ]
机构
[1] Univ Toulouse 3, CNRS, Phys Theor Lab, UMR 5152, F-31062 Toulouse, France
[2] Univ Cergy Pontoise, CNRS, Lab Phys Theor & Modelisat, UMR 8089, F-95300 Cergy Pontoise, France
[3] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 06期
关键词
GROUND-STATES; SPIN-1; CHAIN; FIELD-THEORY; ANTIFERROMAGNETS; EXCITATIONS; SYSTEMS; PHASES;
D O I
10.1103/PhysRevB.83.060407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The zero-temperature properties of the SO(5) bilinear-biquadratic Heisenberg chain are investigated by means of a low-energy approach and large-scale numerical calculations. In sharp contrast to the spin-1 SO(3) Heisenberg chain, we show that the SO(5) Heisenberg chain is dimerized with a twofold degenerate ground state. On top of this gapful phase, we find the emergence of a nondegenerate gapped phase with hidden (Z(2) x Z(2))(2) symmetry and spin-3/2 edge states that can be understood from a SO(5) AKLT wave function. We derive a low-energy theory describing the quantum critical point which separates these two gapped phases. It is shown and confirmed numerically that this quantum critical point belongs to the SO(5)(1) universality class.
引用
收藏
页数:4
相关论文
共 50 条