Preeclampsia enhances neuroglial marker expression in umbilical cord Wharton's jelly-derived mesenchymal stem cells

被引:13
|
作者
Joerger-Messerli, Marianne [1 ,2 ]
Bruehlmann, Esther [1 ,2 ]
Bessire, Anice [1 ,2 ]
Wagner, Anna [1 ]
Mueller, Martin [1 ,2 ]
Surbek, Daniel V. [1 ,2 ]
Schoeberlein, Andreina [1 ,2 ]
机构
[1] Univ Hosp Bern, Dept Obstet & Gynecol, CH-3010 Bern, Switzerland
[2] Univ Bern, Dept Clin Res, Bern, Switzerland
来源
关键词
Mesenchymal stem cells; neuroglial differentiation; perinatal brain injury; preeclampsia; Wharton's jelly; ISCHEMIC BRAIN-INJURY; DIFFERENTIATION; ADULT; TRANSPLANTATION; THERAPY;
D O I
10.3109/14767058.2014.921671
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Objective: The aim of the study was to compare the neuroglial phenotype of Wharton's jelly-derived mesenchymal stem cells (WJ-MSC) from pregnancies complicated with preeclampsia and gestational age (GA)-matched controls. Methods: WJ-MSC were isolated from umbilical cords from both groups and analyzed for the cell surface expression of MSC markers and the gene and protein expression of neuroglial markers. Results: All WJ cells were highly positive for the MSC markers CD105, CD90 and CD73, but negative for markers specific for hematopoietic (CD34) and immunological cells (CD45, CD14, CD19 and HLA-DR). WJ-MSC from both groups expressed neuroglial markers (MAP-2, GFAP, MBP, Musashi-1 and Nestin) at the mRNA and protein level. The protein expressions of neuronal (MAP-2) and oligodendrocytic (MBP) markers were significantly increased in WJ-MSC from preeclampsia versus GA-matched controls. Conclusions: WJ-MSC from preeclamptic patients are possibly more committed to neuroglial differentiation through the activation of pathways involved both in the pathophysiology of the disease and in neurogenesis.
引用
收藏
页码:464 / 469
页数:6
相关论文
共 50 条
  • [1] VITRIFICATION OF HUMAN UMBILICAL CORD WHARTON'S JELLY-DERIVED MESENCHYMAL STEM CELLS
    Massood, Ezzatabadipour
    Maryam, Kaviani
    Parvin, Salehinejad
    Mojgan, Mohammadi
    Noureddin, Nematollahi-Mahani Seyed
    CRYOLETTERS, 2013, 34 (05) : 471 - 480
  • [2] Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into endometrial cells
    Shi, Qin
    Gao, JingWei
    Jiang, Yao
    Sun, Baolan
    Lu, Wei
    Su, Min
    Xu, Yunzhao
    Yang, Xiaoqing
    Zhang, Yuquan
    STEM CELL RESEARCH & THERAPY, 2017, 8
  • [3] Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into endometrial cells
    Qin Shi
    JingWei Gao
    Yao Jiang
    Baolan Sun
    Wei Lu
    Min Su
    Yunzhao Xu
    Xiaoqing Yang
    Yuquan Zhang
    Stem Cell Research & Therapy, 8
  • [4] Immunomodulatory effect of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on lymphocytes
    Zhou, Changhui
    Yang, Bo
    Tian, Yi
    Jiao, Hongliang
    Zheng, Wendi
    Wang, Jian
    Guan, Fangxia
    CELLULAR IMMUNOLOGY, 2011, 272 (01) : 33 - 38
  • [5] Study of the cellular senescence process in human umbilical cord Wharton's jelly-derived mesenchymal stem cells
    Hejazi, Sajjad
    Maleki, Masoud
    Rasekh, Morteza
    ADVANCES IN HUMAN BIOLOGY, 2023, 13 (04) : 361 - 366
  • [6] Umbilical cord Wharton's jelly-derived mesenchymal stem cells: a potential cell source for infarct repair?
    Kain, D.
    Lypov, R.
    Mayorov, M.
    Feinberg, M.
    Leor, J.
    Nagler, A.
    BONE MARROW TRANSPLANTATION, 2012, 47 : S283 - S283
  • [9] Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiation into nerve-like cells
    Ma, L
    Feng, XY
    Cui, BL
    Law, F
    Jiang, XW
    Yang, LY
    Xie, QD
    Huang, TH
    CHINESE MEDICAL JOURNAL, 2005, 118 (23) : 1987 - 1993
  • [10] Potency of umbilical cord blood- and Wharton’s jelly-derived mesenchymal stem cells for scarless wound healing
    Hanako Doi
    Yuriko Kitajima
    Lan Luo
    Chan Yan
    Seiko Tateishi
    Yusuke Ono
    Yoshishige Urata
    Shinji Goto
    Ryoichi Mori
    Hideaki Masuzaki
    Isao Shimokawa
    Akiyoshi Hirano
    Tao-Sheng Li
    Scientific Reports, 6