Evaluation of supervised vs. non supervised databases for hand geometry verification

被引:0
|
作者
Faundez-Zanuy, Marcos
Fabregas, Joan
Ferrer, Miguel A.
Travieso, Carlos M.
Alonso, Jesus B.
机构
来源
COMPUTATIONAL AND AMBIENT INTELLIGENCE | 2007年 / 4507卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we describe two different hand image databases. One has been acquired in laboratory condition with a document scanner, and the other one in operational conditions using a webcam and an infrared filter. The experimental part describes some verification experiments and extracts relevant conclusions about image acquisition and biometric classification.
引用
收藏
页码:1122 / 1129
页数:8
相关论文
共 50 条
  • [1] Evaluation of supervised vs. non supervised databases for hand geometry identification
    Ferrer, Miguel A.
    Faundez-Zanuy, Marcos
    Travieso, Carlos M.
    Fabregas, Joan
    Alonso, Jesus B.
    2006: 40TH ANNUAL IEEE INTERNATIONAL CARNAHAN CONFERENCES SECURITY TECHNOLOGY, PROCEEDINGS, 2006, : 180 - +
  • [2] Supervised vs. non-supervised physical activity: The impact on functional fitness in older adults
    Vaz, Claudia
    Rezende, Vitor
    Serra, Nuno
    Marques, Ermelinda
    Fonseca, Maria
    Vila-Cha, Carolina
    JOURNAL OF HUMAN SPORT AND EXERCISE, 2019, 14 : S1582 - S1585
  • [3] Semi-Supervised vs. Supervised Learning for Mental Health Monitoring: A Case Study on Bipolar Disorder
    Casalino, Gabriella
    Castellano, Giovanna
    Hryniewicz, Olgierd
    Leite, Daniel
    Opara, Karol
    Radziszewska, Weronika
    Kaczmarek-Majer, Katarzyna
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2023, 33 (03) : 419 - 428
  • [4] The effects of supervision on three different exercises modalities (supervised vs. home vs. supervised plus home) in older adults: Randomized controlled trial protocol
    Costa, Sabrine Nayara
    Boiko Ferreira, Luis Henrique
    Barauce Bento, Paulo Cesar
    PLOS ONE, 2021, 16 (11):
  • [5] Supervised vs. unsupervised learning for construction crew productivity prediction
    Oral, Mustafa
    Oral, Emel Laptali
    Aydin, Ahmet
    AUTOMATION IN CONSTRUCTION, 2012, 22 : 271 - 276
  • [6] Detecting Gender Stereotypes: Lexicon vs. Supervised Learning Methods
    Cryan, Jenna
    Tang, Shiliang
    Zhang, Xinyi
    Metzger, Miriam
    Zheng, Haitao
    Zhao, Ben Y.
    PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), 2020,
  • [7] Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
    Luongo, Giorgio
    Schuler, Steffen
    Rivolta, Massimo W.
    Dossel, Olaf
    Sassi, Roberto
    Loewe, Axel
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [8] Human vs. supervised machine learning: Who learns patterns faster?
    Kuehl, Niklas
    Goutier, Marc
    Baier, Lucas
    Wolff, Clemens
    Martin, Dominik
    COGNITIVE SYSTEMS RESEARCH, 2022, 76 : 78 - 92
  • [9] File-Level Defect Prediction: Unsupervised vs. Supervised Models
    Yan, Meng
    Fang, Yicheng
    Lo, David
    Xia, Xin
    Zhang, Xiaohong
    11TH ACM/IEEE INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT (ESEM 2017), 2017, : 344 - 353
  • [10] Deep Learning for Cardiac Motion Estimation: Supervised vs. Unsupervised Training
    Qiu, Huaqi
    Qin, Chen
    Le Folgoc, Loic
    Hou, Benjamin
    Schlemper, Jo
    Rueckert, Daniel
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: MULTI-SEQUENCE CMR SEGMENTATION, CRT-EPIGGY AND LV FULL QUANTIFICATION CHALLENGES, 2020, 12009 : 186 - 194