Automatic localization of anatomical point landmarks for brain image processing algorithms

被引:6
|
作者
Neu, Scott C. [1 ]
Toga, Arthur W. [1 ]
机构
[1] Univ Calif Los Angeles, Lab Neuro Imaging, David Geffen Sch Med, Los Angeles, CA 90095 USA
关键词
anatomical point landmark; automation; singular value decomposition; least-squares; neural network; multi-resolution; seed points;
D O I
10.1007/s12021-008-9018-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Many brain image processing algorithms require one or more well-chosen seed points because they need to be initialized close to an optimal solution. Anatomical point landmarks are useful for constructing initial conditions for these algorithms because they tend to be highly-visible and predictably-located points in brain image scans. We introduce an empirical training procedure that locates user-selected anatomical point landmarks within well-defined precisions using image data with different resolutions and MRI weightings. Our approach makes no assumptions on the structural or intensity characteristics of the images and produces results that have no tunable run-time parameters. We demonstrate the procedure using a Java GUI application (LONI ICE) to determine the MRI weighting of brain scans and to locate features in T1-weighted and T2-weighted scans.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 50 条
  • [1] Automatic Localization of Anatomical Point Landmarks for Brain Image Processing Algorithms
    Scott C. Neu
    Arthur W. Toga
    Neuroinformatics, 2008, 6
  • [2] Anatomical landmarks localization for studies
    Laiz, Pablo
    Vitria, Jordi
    Gilabert, Pere
    Wenzek, Hagen
    Malagelada, Carolina
    Watson, Angus J. M.
    Segui, Santi
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 108
  • [3] Automatic localization of anatomical landmarks in cardiac MR perfusion using random forests
    Kim, Yoon-Chul
    Chung, Younjoon
    Choe, Yeon Hyeon
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 38 : 370 - 378
  • [4] Localization of Invisible Point Landmarks on Multimodal Tomographic Images of the Brain
    Y. Z. Polonsky
    A. A. Bogdan
    Biomedical Engineering, 2020, 53 : 312 - 317
  • [5] Localization of Invisible Point Landmarks on Multimodal Tomographic Images of the Brain
    Polonsky, Y. Z.
    Bogdan, A. A.
    BIOMEDICAL ENGINEERING-MEDITSINSKAYA TEKNIKA, 2020, 53 (05): : 312 - 317
  • [6] Automatic localization of cephalometric landmarks
    Mohseni, Hadis
    Kasaei, Shohreh
    2007 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, VOLS 1-3, 2007, : 748 - 753
  • [7] The accuracy of image registration for the brain and the nasopharynx using external anatomical landmarks
    Peters, AR
    Muller, SH
    de Munck, JC
    van Herk, M
    PHYSICS IN MEDICINE AND BIOLOGY, 2000, 45 (08): : 2403 - 2416
  • [8] Automatic localization of retinal landmarks
    Cheng, Xiangang
    Wong, Damon Wing Kee
    Liu, Jiang
    Lee, Beng-Hai
    Tan, Ngan Meng
    Zhang, Jielin
    Cheng, Ching Yu
    Cheung, Gemmy
    Wong, Tien Yin
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 4954 - 4957
  • [9] Direct and continuous localization of anatomical landmarks for image-guided orthognathic surgery
    Kim, Seong-Ha
    Kim, Dae-Seung
    Huh, Kyung-Hoe
    Lee, Sam-Sun
    Heo, Min-Suk
    Choi, Soon-Chul
    Hwang, Soon-Jung
    Yi, Won-Jin
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2013, 116 (04): : 402 - 410
  • [10] Automatic localization of cephalometric landmarks
    Grau, V
    Alcañiz, M
    Juan, MC
    Monserrat, C
    Knoll, C
    JOURNAL OF BIOMEDICAL INFORMATICS, 2001, 34 (03) : 146 - 156