High specific surface area bimodal porous carbon derived from biomass reed flowers for high performance lithium-sulfur batteries

被引:111
|
作者
Wang, Zhifeng [1 ]
Zhang, Xiaomin [1 ]
Liu, Xiaoli [2 ]
Zhang, Yongguang [1 ]
Zhao, Weimin [1 ]
Li, Yongyan [1 ]
Qin, Chunling [1 ]
Bakenov, Zhumabay [3 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Engn, Key Lab New Type Funct Mat Hebei Prov, Tianjin 300130, Peoples R China
[2] Hebei Univ Sci & Technol, Sch Mat Sci & Engn, Shijiazhuang 050018, Hebei, Peoples R China
[3] Nazarbayev Univ, Sch Engn & Digital Sci, Inst Batteries LLC, Natl Lab Astana, 53 Kabanbay Batyr Ave, Nur Sultan 010000, Kazakhstan
基金
中国国家自然科学基金;
关键词
Biomass; Bimodal; Porous; Carbon; Li-S batteries; Cathode; METAL-ORGANIC FRAMEWORKS; LI-S BATTERIES; POLYSULFIDE RESERVOIR; COMPOSITE CATHODE; GRAPHITIC CARBON; NITROGEN; ELECTRODE; HOST; INTERLAYER; SEPARATOR;
D O I
10.1016/j.jcis.2020.02.062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the advantages of excellent theoretical specific capacity and specific energy, lithium-sulfur (Li-S) battery is regarded as one of promising energy storage systems. However, poor conductivity and shuttle effect of intermediate electrochemical reaction products limit its application. As good sulfur carriers, porous carbon materials can effectively remit these shortcomings. In this paper, a combination of a hydrothermal KOH activation and successive pyrolysis of biomass reed flowers is proposed to prepare a bimodal porous carbon (BPC) material with high specific surface area (1712.6 m(2) g(-1)). The as-obtained low-cost BPC/S cathodes exhibit excellent cycling performance (908 mAh g(-1) at 0.1 C after 100 cycles), good rate capability and cyclability (663 mAh g(-1) at 1 C after 1000 cycles), as well as a high areal capacity (6.6 mAh cm(-2) at 0.1 C after 50 cycles with a sulfur loading of 8.3 mg cm(-2)). Such excellent electrochemical performance was mainly ascribed to a specific bimodal porous structure with high specific surface area and plenty spaces for sulfur impregnating, which significantly reduces the escape of polysulfides during cycling and guarantees a good cycling stability. Moreover, the secondary class pores (mesopores and micropores) of the material offer plenty of small channels to improve the electronic and ionic transfer rate and, consequently, to enhance the rate capability. The as-synthesized BPC material presents a great potential as a sulfur carrier material for Li-S battery applications. In this work, we also demonstrate a simple route to develop low-cost carbon materials derived from renewable biomass which may expand and promote their use in energy storage applications. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:22 / 33
页数:12
相关论文
共 50 条
  • [1] Activated porous carbon materials with ultrahigh specific surface area derived from banana peels for high-performance lithium-sulfur batteries
    Yan, Yinglin
    Wei, Yiqi
    Li, Qiaole
    Shi, Mangmang
    Zhao, Chao
    Chen, Liping
    Fan, Chaojiang
    Yang, Rong
    Xu, Yunhua
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (13) : 11325 - 11335
  • [2] Biomass-Derived Porous Carbon with Micropores and Small Mesopores for High-Performance Lithium-Sulfur Batteries
    Yang, Kai
    Gao, Qiuming
    Tan, Yanli
    Tian, Weiqian
    Qian, Weiwei
    Zhu, Lihua
    Yang, Chunxiao
    CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (10) : 3239 - 3244
  • [3] Biomass fallen leaves derived porous carbon for high performance lithium sulfur batteries
    Deng, Yanxi
    Lei, Tianyu
    Feng, Yuanyuan
    Zhang, Bo
    Ding, Hongyu
    Lu, Qian
    Tian, Runsai
    Mushtaq, Misbah
    Guo, Wenjuan
    Yao, Mingming
    Feng, Jijun
    IONICS, 2023, 29 (03) : 1029 - 1038
  • [4] Biomass fallen leaves derived porous carbon for high performance lithium sulfur batteries
    Yanxi Deng
    Tianyu Lei
    Yuanyuan Feng
    Bo Zhang
    Hongyu Ding
    Qian Lu
    Runsai Tian
    Misbah Mushtaq
    Wenjuan Guo
    Mingming Yao
    Jijun Feng
    Ionics, 2023, 29 : 1029 - 1038
  • [5] Hierarchically Porous Carbon Derived from Peanut Shells for High-performance Lithium-sulfur Batteries
    Zhu, Lei
    Wang, Yourong
    Xie, Kai
    Song, Guangsen
    Cheng, Siqing
    CHEMISTRY LETTERS, 2018, 47 (02) : 236 - 239
  • [6] Bio-mass derived hierarchically porous and high surface area carbon as an efficient sulfur host for lithium-sulfur batteries
    Kumar Nema P.
    Mohanty K.
    Thangavel R.
    Journal of Industrial and Engineering Chemistry, 2023, 121 : 235 - 241
  • [7] Activated porous carbon materials with ultrahigh specific surface area derived from banana peels for high-performance lithium–sulfur batteries
    Yinglin Yan
    Yiqi Wei
    Qiaole Li
    Mangmang Shi
    Chao Zhao
    Liping Chen
    Chaojiang Fan
    Rong Yang
    Yunhua Xu
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 11325 - 11335
  • [8] Green Production of Biomass-Derived Carbon Materials for High-Performance Lithium-Sulfur Batteries
    Ma, Chao
    Zhang, Mengmeng
    Ding, Yi
    Xue, Yan
    Wang, Hongju
    Li, Pengfei
    Wu, Dapeng
    NANOMATERIALS, 2023, 13 (11)
  • [9] Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries
    Wenjuan Wang
    Yan Zhao
    Yongguang Zhang
    Ning Liu
    Zhumabay Bakenov
    Journal of Materials Science & Technology, 2021, 74 (15) : 69 - 77
  • [10] Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries
    Wang, Wenjuan
    Zhao, Yan
    Zhang, Yongguang
    Liu, Ning
    Bakenov, Zhumabay
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 74 : 69 - 77