Zero Distribution of Random Sparse Polynomials

被引:23
|
作者
Bayraktar, Turgay [1 ,2 ]
机构
[1] Syracuse Univ, Math Dept, Syracuse, NY 13244 USA
[2] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkey
关键词
INTERSECTION THEORY; EQUIDISTRIBUTION; GEOMETRY; CURRENTS;
D O I
10.1307/mmj/1490639822
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic zero distribution of random Laurent polynomials whose supports are contained in dilates of a fixed integral polytope P as their degree grow. We consider a large class of probability distributions including those induced from i.i.d. random coefficients whose distribution law has bounded density with logarithmically decaying tails and moderate measures defined over the space of Laurent polynomials. We obtain a quantitative localized version of the Bernstein-Kouchnirenko theorem.
引用
收藏
页码:389 / 419
页数:31
相关论文
共 50 条
  • [1] Zero distribution of random polynomials
    Igor E. Pritsker
    Journal d'Analyse Mathématique, 2018, 134 : 719 - 745
  • [2] Zero distribution of random polynomials
    Pritsker, Igor E.
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 134 (02): : 719 - 745
  • [3] ASYMPTOTIC ZERO DISTRIBUTION OF RANDOM ORTHOGONAL POLYNOMIALS
    Bloom, Thomas
    Dauvergne, Duncan
    ANNALS OF PROBABILITY, 2019, 47 (05): : 3202 - 3230
  • [4] Distribution of Coefficients of Rank Polynomials for Random Sparse Graphs
    Jakobson, Dmitry
    MacRury, Calum
    Norin, Sergey
    Turner, Lise
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [5] Asymptotic Zero Distribution of Random Polynomials Spanned by General Bases
    Pritsker, Igor E.
    MODERN TRENDS IN CONSTRUCTIVE FUNCTION THEORY, 2016, 661 : 121 - 140
  • [6] Natural Boundary and Zero Distribution of Random Polynomials in Smooth Domains
    Pritsker, Igor
    Ramachandran, Koushik
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (03) : 401 - 410
  • [7] Natural Boundary and Zero Distribution of Random Polynomials in Smooth Domains
    Igor Pritsker
    Koushik Ramachandran
    Computational Methods and Function Theory, 2019, 19 : 401 - 410
  • [8] Random sampling of sparse trigonometric polynomials
    Rauhut, Holger
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2007, 22 (01) : 16 - 42
  • [9] Zero distribution of matrix polynomials
    Dym, Harry
    Volok, Dan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 425 (2-3) : 714 - 738
  • [10] Hamming Weight of Product of Random Sparse Polynomials
    Kawachi, Akinori
    PROCEEDINGS OF 2020 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2020), 2020, : 368 - 371