Topological entanglement entropy in d-dimensions for Abelian higher gauge theories
被引:5
|
作者:
Ibieta-Jimenez, J. P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, BrazilUniv Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, Brazil
Ibieta-Jimenez, J. P.
[1
]
Petrucci, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, BrazilUniv Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, Brazil
Petrucci, M.
[1
]
Xavier, L. N. Queiroz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, BrazilUniv Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, Brazil
Xavier, L. N. Queiroz
[1
]
Teotonio-Sobrinho, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, BrazilUniv Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, Brazil
Teotonio-Sobrinho, P.
[1
]
机构:
[1] Univ Sao Paulo, Dept Fis Matemat, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, Brazil
Topological States of Matter;
Gauge Symmetry;
Field Theories in Higher Dimensions;
D O I:
10.1007/JHEP03(2020)167
中图分类号:
O412 [相对论、场论];
O572.2 [粒子物理学];
学科分类号:
摘要:
We compute the topological entanglement entropy for a large set of lattice models in d-dimensions. It is well known that many such quantum systems can be constructed out of lattice gauge models. For dimensionality higher than two, there are generalizations going beyond gauge theories, which are called higher gauge theories and rely on higher-order generalizations of groups. Our main concern is a large class of d-dimensional quantum systems derived from Abelian higher gauge theories. In this paper, we derive a general formula for the bipartition entanglement entropy for this class of models, and from it we extract both the area law and the sub-leading terms, which explicitly depend on the topology of the entangling surface. We show that the entanglement entropy S-A in a sub-region A is proportional to log can be further divided into a contribution that scales with the size of the boundary partial differential A and a term which depends on the topology of partial differential A. There is also a topological contribution coming from A itself, that may be non-zero when A has a non-trivial homology. We present some examples and discuss how the topology of A affects the topological entropy. Our formalism allows us to do most of the calculation for arbitrary dimension d. The result is in agreement with entanglement calculations for known topological models.
机构:
Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, IndiaTata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India
Ghosh, Sudip
Soni, Ronak M.
论文数: 0引用数: 0
h-index: 0
机构:
Tata Inst Fundamental Res, Dept Theoret Phys, Bombay 400005, Maharashtra, IndiaTata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India
Soni, Ronak M.
Trivedi, Sandip P.
论文数: 0引用数: 0
h-index: 0
机构:
Tata Inst Fundamental Res, Dept Theoret Phys, Bombay 400005, Maharashtra, IndiaTata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India