Online multivariate changepoint detection with type I error control and constant time/memory updates per series

被引:0
|
作者
Hahn, Georg [1 ]
机构
[1] Univ Lancaster, Dept Stat, Lancaster LA1 4YF, England
关键词
Constant time update; Multiple testing; Multivariate changepoint detection; CHANGE-POINT ESTIMATION; TIME-SERIES;
D O I
10.1016/j.spl.2021.109258
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article presents a simple algorithm for online multivariate changepoint detection of a mean in rare changepoint settings. The algorithm is based on a modified cusum statistic and guarantees control of the type I error on any false discoveries, while featuring O(1) time and O(1) memory updates per series as well as a proven detection delay. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 44 条
  • [1] A constant-per-iteration likelihood ratio test for online changepoint detection for exponential family models
    Ward, Kes
    Romano, Gaetano
    Eckley, Idris
    Fearnhead, Paul
    STATISTICS AND COMPUTING, 2024, 34 (03)
  • [2] A pairwise likelihood-based approach for changepoint detection in multivariate time series models
    Ma, Ting Fung
    Yau, Chun Yip
    BIOMETRIKA, 2016, 103 (02) : 409 - 421
  • [3] Forecasting Error Pattern-Based Anomaly Detection in Multivariate Time Series
    Park, Seoyoung
    Han, Siho
    Woo, Simon S.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE TRACK, ECML PKDD 2020, PT IV, 2021, 12460 : 157 - 172
  • [4] An extreme learning machine for unsupervised online anomaly detection in multivariate time series
    Peng, Xinggan
    Li, Hanhui
    Yuan, Feng
    Razul, Sirajudeen Gulam
    Chen, Zhebin
    Lin, Zhiping
    NEUROCOMPUTING, 2022, 501 : 596 - 608
  • [5] Online Multivariate Time Series Anomaly Detection Method Based on Contrastive Learning
    Dong, Xiyao
    Liu, Hui
    Du, Junzhao
    Wang, Zhengkai
    Wang, Cheng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 468 - 479
  • [6] MEMTO: Memory-guided Transformer for Multivariate Time Series Anomaly Detection
    Song, Junho
    Kim, Keonwoo
    Oh, Jeonglyul
    Cho, Sungzoon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [7] An online outlier detection method for process control time series
    Liu Fang
    Mao Zhi-zhong
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 3263 - 3267
  • [8] A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series
    Zhang G.
    Chow S.-M.
    Ong A.D.
    Psychometrika, 2011, 76 (1) : 77 - 96
  • [9] A SANDWICH-TYPE STANDARD ERROR ESTIMATOR OF SEM MODELS WITH MULTIVARIATE TIME SERIES
    Zhang, Guangjian
    Chow, Sy-Miin
    Ong, Anthony D.
    PSYCHOMETRIKA, 2011, 76 (01) : 77 - 96
  • [10] Online Anomaly Detection for Smartphone-Based Multivariate Behavioral Time Series Data
    Liu, Gang
    Onnela, Jukka-Pekka
    SENSORS, 2022, 22 (06)