Sparse Gaussian Elimination Modulo p: An Update

被引:3
|
作者
Bouillaguet, Charles [1 ]
Delaplace, Claire [1 ,2 ]
机构
[1] Univ Lille, CNRS, Ctr Rech Informat Signal & Automat Lille, Cent Lille,UMR 9189,CRIStAL, F-59000 Lille, France
[2] Univ Rennes 1, IRISA, Rennes, France
关键词
LINEAR-EQUATIONS; SYSTEMS;
D O I
10.1007/978-3-319-45641-6_8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper considers elimination algorithms for sparse matrices over finite fields. We mostly focus on computing the rank, because it raises the same challenges as solving linear systems, while being slightly simpler. We developed a new sparse elimination algorithm inspired by the Gilbert-Peierls sparse LU factorization, which is well-known in the numerical computation community. We benchmarked it against the usual right-looking sparse gaussian elimination and the Wiedemann algorithm using the Sparse Integer Matrix Collection of Jean-Guillaume Dumas. We obtain large speedups (1000x and more) on many cases. In particular, we are able to compute the rank of several large sparse matrices in seconds or minutes, compared to days with previous methods.
引用
收藏
页码:101 / 116
页数:16
相关论文
共 50 条
  • [1] Sparse Gaussian processes using backward elimination
    Bo, Liefeng
    Wang, Ling
    Jiao, Licheng
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 1083 - 1088
  • [2] GAUSSIAN ELIMINATION METHOD FOR INVERTING SPARSE MATRICES
    TEWARSON, RP
    COMPUTING, 1972, 9 (01) : 1 - &
  • [3] A NEW IMPLEMENTATION OF SPARSE GAUSSIAN-ELIMINATION
    SCHREIBER, R
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1982, 8 (03): : 256 - 276
  • [4] ON THE COMPLEXITY OF SPARSE GAUSSIAN-ELIMINATION VIA BORDERING
    BANK, RE
    ROSE, DJ
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (01): : 145 - 160
  • [5] FRACTION FREE GAUSSIAN-ELIMINATION FOR SPARSE MATRICES
    LEE, HR
    SAUNDERS, BD
    JOURNAL OF SYMBOLIC COMPUTATION, 1995, 19 (05) : 393 - 402
  • [6] An asynchronous parallel supernodal algorithm for sparse Gaussian elimination
    Demmel, JW
    Gilbert, JR
    Li, XYS
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 20 (04) : 915 - 952
  • [7] Optimization of the BLT equation based on a sparse gaussian elimination
    Parmantier, JP
    Ferrières, X
    Bertuol, S
    Baum, CE
    ELECTROMAGNETIC COMPATIBILITY 1999, 1999, : 137 - 142
  • [8] Approximate Gaussian Elimination for Laplacians - Fast, Sparse, and Simple
    Kyng, Rasmus
    Sachdeva, Sushant
    2016 IEEE 57TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2016, : 573 - 582
  • [9] NEGATIVE RESULT ON SPARSE-MATRIX SPLITTING AND GAUSSIAN ELIMINATION
    GEORGE, A
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (06) : 846 - 853
  • [10] Dynamic block data distribution for parallel sparse Gaussian elimination
    Daoudi, EM
    Manneback, P
    Zbakh, M
    INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATION TECHNOLOGIES : EXPLORING EMERGING TECHNOLOGIES, 2001, : 177 - 184