Wargaming with Quadratic Forms and Brauer Configuration Algebras

被引:1
|
作者
Moreno Canadas, Agustin [1 ]
Espinosa, Pedro Fernando Fernandez [1 ]
Bravo Rios, Gabriel [1 ]
机构
[1] Univ Nacl Colombia, Dept Matemat, Edificio Yu Takeuchi 404, Kra 30 45-03, Bogota, Colombia
关键词
Brauer configuration algebra; Dynkin graph; mixed sums of triangular and square numbers; path algebra; positive root; quadratic form; quiver representation; wargame; MIXED SUMS; SQUARES; NUMBER;
D O I
10.3390/math10050729
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Postnikov introduced Bert Kostant's game to build the maximal positive root associated with the quadratic form of a simple graph. This result, and some other games based on Cartan matrices, give a new version of Gabriel's theorem regarding algebras classification. In this paper, as a variation of Bert Kostant's game, we introduce a wargame based on a missile defense system (MDS). In this case, missile trajectories are interpreted as suitable paths of a quiver (directed graph). The MDS protects a region of the Euclidean plane by firing missiles from a ground-based interceptor (GBI) located at the point (0,0). In this case, a missile success interception occurs if a suitable positive number associated with the launches of the enemy army can be written as a mixed sum of triangular and square numbers.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Brauer configuration algebras: A generalization of Brauer graph algebras
    Green, Edward L.
    Schroll, Sibylle
    BULLETIN DES SCIENCES MATHEMATIQUES, 2017, 141 (06): : 539 - 572
  • [2] Special multiserial algebras, Brauer configuration algebras and more: A survey
    Green, Edward L.
    Schroll, Sibylle
    REPRESENTATIONS OF ALGEBRAS, 2018, 705 : 69 - 77
  • [3] Seaweeds Arising from Brauer Configuration Algebras
    Canadas, Agustin Moreno
    Mendez, Odette M.
    MATHEMATICS, 2023, 11 (08)
  • [4] Brauer Configuration Algebras Arising from Dyck Paths
    Moreno Canadas, Agustin
    Bravo Rios, Gabriel
    Marin Gaviria, Isaias David
    MATHEMATICS, 2022, 10 (09)
  • [5] ALGEBRAS AND QUADRATIC-FORMS
    BONGARTZ, K
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1983, 28 (DEC): : 461 - 469
  • [6] On some relationships between snake graphs and Brauer configuration algebras
    Espinosa, P. F. F.
    Gonzalez, J. F.
    Herran, J. P.
    Canadas, A. M.
    Ramirez, J. L.
    ALGEBRA AND DISCRETE MATHEMATICS, 2022, 33 (02): : 29 - 59
  • [7] Homological Ideals as Integer Specializations of Some Brauer Configuration Algebras
    Espinosa, P. F. Fernandez
    Canadas, A. Moreno
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 74 (09) : 1369 - 1385
  • [8] Brauer configuration algebras for multimedia based cryptography and security applications
    María Alejandra Osorio Angarita
    Agustín Moreno Cañadas
    Multimedia Tools and Applications, 2021, 80 : 23485 - 23510
  • [9] Brauer configuration algebras and Kronecker modules to categorify integer sequences
    Moreno Canadas, Agustin
    Marin Gaviria, Isaias David
    Fernandez Espinosa, Pedro Fernando
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (02): : 661 - 682
  • [10] Homological Ideals as Integer Specializations of Some Brauer Configuration Algebras
    P. F. Fernández Espinosa
    A. Moreno Cañadas
    Ukrainian Mathematical Journal, 2023, 74 : 1369 - 1385