Normal approximation by Stein's method under sublinear expectations

被引:20
|
作者
Song, Yongsheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, RCSDS, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
国家重点研发计划;
关键词
Stein's method; Normal approximation; Sublinear expectation; G-normal distribution; G-BROWNIAN MOTION; STOCHASTIC CALCULUS; REGULARITY THEORY;
D O I
10.1016/j.spa.2019.08.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Peng (2008) proved the Central Limit Theorem under a sublinear expectation: Let (X-i)(i >= 1) be a sequence of i.i.d random variables under a sublinear expectation (E) over cap with (E) over cap [X-1] = (E) over cap[-X-1] = 0 and (E) over cap [1X(1)vertical bar(3)] < infinity. Setting W-n := X-1+...+X-n/root n we have, for each bounded Lipschitz function phi, lim(n ->infinity) vertical bar<(E)over cap>[phi(W-n)] - N-G(phi)vertical bar = 0, where N-G is the G-normal distribution with G(a) = 1/2 (E) over cap [aX(1)(2)], a is an element of R In this paper, we shall give an estimate of the convergence rate of this CLT by Stein's method under sublinear expectations: Under the same conditions as above, there exists a constant a is an element of (0, 1) depending on (sigma) under bar and (sigma) over bar and a positive constant C-alpha,C-G depending on alpha, (sigma) under bar and (sigma) over bar such that sup&(VERBAR;phi vertical bar <= 1) vertical bar(E) over cap[phi(W-n)] - N-G(phi) vertical bar <= C-alpha,C-G (E) over cap[vertical bar X-1 vertical bar(2+alpha)]/n(alpha/2), where (sigma) over bar (2) = (E) over cap [X-1(2)], (sigma) under bar (2) = -(E) over cap [X-(2)(1)] > 0 and N-G is the G-normal distribution with G(a) = 1/2 (E) over cap [aX(1)(2)] = 1/2 ((sigma) over bar (2) a(+) - (sigma) under bar (2)a(-)), a is an element of R. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:2838 / 2850
页数:13
相关论文
共 50 条
  • [1] Stein's method for the law of large numbers under sublinear expectations
    Song, Yongsheng
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2021, 6 (03): : 199 - 212
  • [2] On Stein factors in Stein's method for normal approximation
    Gaunt, Robert E.
    STATISTICS & PROBABILITY LETTERS, 2025, 219
  • [3] Discretized normal approximation by Stein's method
    Fang, Xiao
    BERNOULLI, 2014, 20 (03) : 1404 - 1431
  • [4] STEIN'S METHOD AND NORMAL APPROXIMATION OF POISSON FUNCTIONALS
    Peccati, G.
    Sole, J. L.
    Taqqu, M. S.
    Utzet, F.
    ANNALS OF PROBABILITY, 2010, 38 (02): : 443 - 478
  • [5] Stein's method of normal approximation for dynamical systems
    Hella, Olli
    Leppanen, Juho
    Stenlund, Mikko
    STOCHASTICS AND DYNAMICS, 2020, 20 (04)
  • [6] STEIN'S METHOD OF NORMAL APPROXIMATION: SOME RECOLLECTIONS AND REFLECTIONS
    Chen, Louis H. Y.
    ANNALS OF STATISTICS, 2021, 49 (04): : 1850 - 1863
  • [7] Normal approximation for call function via Stein's method
    Jongpreechaharn, Suporn
    Neammanee, Kritsana
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (14) : 3498 - 3517
  • [8] MULTIVARIATE NORMAL APPROXIMATION WITH STEIN'S METHOD OF EXCHANGEABLE PAIRS UNDER A GENERAL LINEARITY CONDITION
    Reinert, Gesine
    Roellin, Adrian
    ANNALS OF PROBABILITY, 2009, 37 (06): : 2150 - 2173
  • [9] Multivariate normal approximation using Stein's method and Malliavin calculus
    Nourdin, Ivan
    Peccati, Giovanni
    Reveillac, Anthony
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01): : 45 - 58
  • [10] Stein's method for geometric approximation
    Pekoz, EA
    JOURNAL OF APPLIED PROBABILITY, 1996, 33 (03) : 707 - 713