Fast and slow waves in the FitzHugh-Nagumo equation

被引:98
|
作者
Krupa, M
Sandstede, B
Szmolyan, P
机构
[1] WEIERSTR INST ANGEW ANAL & STOCHAST,D-10117 BERLIN,GERMANY
[2] COMENIUS UNIV BRATISLAVA,BRATISLAVA,SLOVAKIA
[3] VIENNA TECH UNIV,INST ANGEW & NUMER MATH,A-1040 VIENNA,AUSTRIA
关键词
D O I
10.1006/jdeq.1996.3198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that the FitzHugh-Nagumo equation possesses fast and slow travelling waves. Fast waves are perturbations of singular orbits consisting of two pieces of slow manifolds and connections between them, whereas slow waves are perturbations of homoclinic orbits of the unperturbed system. We unfold a degenerate point where the two types of singular orbits coalesce forming a heteroclinic orbit of the unperturbed system. Let c denote the wave speed and e the singular perturbation parameter. We show that there exists a C-2 smooth curve of homoclinic orbits of the form (c, e(c)) connecting the fast wave branch to the slow wave branch. Additionally we show that this curve has a unique non-degenerate maximum. Our analysis is based on a Shilnikov coordinates result, extending the Exchange Lemma of Jones and Kopell. We also prove the existence of inclination-flip points for the travelling wave equation thus providing the evidence of the existence of n-homoclinic orbits (n-pulses for the FitzHugh-Nagumo equation) for arbitrary n. (C) 1997 Academic Press
引用
收藏
页码:49 / 97
页数:49
相关论文
共 50 条
  • [1] A generalized Fitzhugh-Nagumo equation
    Browne, P.
    Momoniat, E.
    Mahomed, F. M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) : 1006 - 1015
  • [2] Forced entrainment and elimination of spiral waves for the FitzHugh-Nagumo equation
    Sakaguchi, H
    Fujimoto, T
    PROGRESS OF THEORETICAL PHYSICS, 2002, 108 (02): : 241 - 252
  • [3] HETEROCLINIC WAVES OF THE FITZHUGH-NAGUMO EQUATIONS
    PAUWELUSSEN, JP
    MATHEMATICAL BIOSCIENCES, 1982, 58 (02) : 217 - 242
  • [4] The Γ-limit of traveling waves in the FitzHugh-Nagumo system
    Chen, Chao-Nien
    Choi, Yung Sze
    Fusco, Nicola
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (03) : 1805 - 1835
  • [5] On the exact and numerical solutions to the FitzHugh-Nagumo equation
    Yokus, Asif
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (17):
  • [6] Control of spiral waves in FitzHugh-Nagumo systems
    Gao Jia-Zhen
    Xie Ling-Ling
    Xie Wei-Miao
    Gao Ji-Hua
    ACTA PHYSICA SINICA, 2011, 60 (08)
  • [7] Internal layer oscillations in FitzHugh-Nagumo equation
    Ham, Y
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 103 (02) : 287 - 295
  • [8] Complex Oscillations in the Delayed FitzHugh-Nagumo Equation
    Krupa, Maciej
    Touboul, Jonathan D.
    JOURNAL OF NONLINEAR SCIENCE, 2016, 26 (01) : 43 - 81
  • [9] Optimal control of stochastic FitzHugh-Nagumo equation
    Barbu, Viorel
    Cordoni, Francesco
    Di Persio, Luca
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (04) : 746 - 756
  • [10] Traveling pulses in a coupled FitzHugh-Nagumo equation
    Shen, Jianhe
    Zhang, Xiang
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 418