SEMI-LAGRANGIAN SCHEMES FOR LINEAR AND FULLY NON-LINEAR HAMILTON-JACOBI-BELLMAN EQUATIONS

被引:0
|
作者
Debrabant, Kristian [1 ]
Jakobsen, Espen Robstad [2 ]
机构
[1] Univ Southern Denmark, Dept Math & Comp Sci, Campusvej 55, DK-5230 Odense M, Denmark
[2] Norwegian Univ Sci & Technol, NO-7491 Trondheim, Norway
关键词
Monotone approximation schemes; difference-interpolation methods; stability; convergence; error bound; degenerate parabolic equations; Hamilton-Jacobi-Bellman equations; viscosity solution; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical solution of Hamilton-Jacobi-Bellman equations arising in stochastic control theory. We introduce a class of monotone approximation schemes relying on monotone interpolation. These schemes converge under very weak assumptions, including the case of arbitrary degenerate diffusions. Besides providing a unifying framework that includes several known first order accurate schemes, stability and convergence results are given, along with two different robust error estimates. Finally, the method is applied to a super-replication problem from finance.
引用
收藏
页码:483 / 490
页数:8
相关论文
共 50 条
  • [1] A SEMI-LAGRANGIAN SCHEME FOR HAMILTON-JACOBI-BELLMAN EQUATIONS ON NETWORKS
    Carlini, E.
    Festa, A.
    Forcadel, N.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (06) : 3165 - 3196
  • [2] SEMI-LAGRANGIAN SCHEMES FOR LINEAR AND FULLY NON-LINEAR DIFFUSION EQUATIONS
    Debrabant, Kristian
    Jakobsen, Espen R.
    MATHEMATICS OF COMPUTATION, 2013, 82 (283) : 1433 - 1462
  • [3] Boundary Treatment and Multigrid Preconditioning for Semi-Lagrangian Schemes Applied to Hamilton-Jacobi-Bellman Equations
    Reisinger, Christoph
    Arto, Julen Rotaetxe
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (01) : 198 - 230
  • [4] A semi-Lagrangian scheme for Hamilton-Jacobi-Bellman equations with oblique derivatives boundary conditions
    Calzola, Elisa
    Carlini, Elisabetta
    Dupuis, Xavier
    Silva, Francisco J.
    NUMERISCHE MATHEMATIK, 2023, 153 (01) : 49 - 84
  • [5] Boundary Treatment and Multigrid Preconditioning for Semi-Lagrangian Schemes Applied to Hamilton–Jacobi–Bellman Equations
    Christoph Reisinger
    Julen Rotaetxe Arto
    Journal of Scientific Computing, 2017, 72 : 198 - 230
  • [6] Hamilton-Jacobi-Bellman Equations
    Festa, Adriano
    Guglielmi, Roberto
    Hermosilla, Christopher
    Picarelli, Athena
    Sahu, Smita
    Sassi, Achille
    Silva, Francisco J.
    OPTIMAL CONTROL: NOVEL DIRECTIONS AND APPLICATIONS, 2017, 2180 : 127 - 261
  • [7] ON THE HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    ACTA APPLICANDAE MATHEMATICAE, 1983, 1 (01) : 17 - 41
  • [8] A semi-Lagrangian scheme for Hamilton–Jacobi–Bellman equations with oblique derivatives boundary conditions
    Elisa Calzola
    Elisabetta Carlini
    Xavier Dupuis
    Francisco J. Silva
    Numerische Mathematik, 2023, 153 : 49 - 84
  • [9] On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations
    Barles, G
    Jakobsen, ER
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2002, 36 (01) : 33 - 54
  • [10] DEGENERATE HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (05): : 329 - 332