Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference

被引:0
|
作者
Meeds, Edward [1 ]
Welling, Max [1 ,2 ,3 ]
机构
[1] Univ Amsterdam, Inst Informat, Amsterdam, Netherlands
[2] Univ Calif Irvine, Donald Bren Sch Informat & Comp Sci, Irvine, CA USA
[3] Canadian Inst Adv Res, Toronto, ON, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe an embarrassingly parallel, anytime Monte Carlo method for likelihood-free models. The algorithm starts with the view that the stochasticity of the pseudo-samples generated by the simulator can be controlled externally by a vector of random numbers u, in such a way that the outcome, knowing u, is deterministic. For each instantiation of u we run an optimization procedure to minimize the distance between summary statistics of the simulator and the data. After reweighing these samples using the prior and the Jacobian (accounting for the change of volume in transforming from the space of summary statistics to the space of parameters) we show that this weighted ensemble represents a Monte Carlo estimate of the posterior distribution. The procedure can be run embarrassingly parallel (each node handling one sample) and anytime (by allocating resources to the worst performing sample). The procedure is validated on six experiments.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Randomized Multilevel Monte Carlo for Embarrassingly Parallel Inference
    Jasra, Ajay
    Law, Kody J. H.
    Tarakanov, Alexander
    Yu, Fangyuan
    DRIVING SCIENTIFIC AND ENGINEERING DISCOVERIES THROUGH THE INTEGRATION OF EXPERIMENT, BIG DATA, AND MODELING AND SIMULATION, 2022, 1512 : 3 - 21
  • [2] COSMOABC: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation
    Ishida, E. E. O.
    Vitenti, S. D. P.
    Penna-Lima, M.
    Cisewski, J.
    de Souza, R. S.
    Trindade, A. M. M.
    Cameron, E.
    Busti, V. C.
    ASTRONOMY AND COMPUTING, 2015, 13 : 1 - 11
  • [3] Bayesian optimization for likelihood-free cosmological inference
    Leclercq, Florent
    PHYSICAL REVIEW D, 2018, 98 (06)
  • [4] Likelihood-free parallel tempering
    Meïli Baragatti
    Agnès Grimaud
    Denys Pommeret
    Statistics and Computing, 2013, 23 : 535 - 549
  • [5] Likelihood-free parallel tempering
    Baragatti, Meili
    Grimaud, Agnes
    Pommeret, Denys
    STATISTICS AND COMPUTING, 2013, 23 (04) : 535 - 549
  • [6] Generalized Bayesian likelihood-free inference
    Pacchiardi, Lorenzo
    Khoo, Sherman
    Dutta, Ritabrata
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 3628 - 3686
  • [7] Likelihood-free inference via classification
    Gutmann, Michael U.
    Dutta, Ritabrata
    Kaski, Samuel
    Corander, Jukka
    STATISTICS AND COMPUTING, 2018, 28 (02) : 411 - 425
  • [8] pyABC: distributed, likelihood-free inference
    Klinger, Emmanuel
    Rickert, Dennis
    Hasenauer, Jan
    BIOINFORMATICS, 2018, 34 (20) : 3591 - 3593
  • [9] Likelihood-Free Inference by Ratio Estimation
    Thomas, Owen
    Dutta, Ritabrata
    Corander, Jukka
    Kaski, Samuel
    Gutmann, Michael U.
    BAYESIAN ANALYSIS, 2022, 17 (01): : 1 - 31
  • [10] ELFI: Engine for Likelihood-Free Inference
    Lintusaari, Jarno
    Vuollekoski, Henri
    Kangasraasio, Antti
    Skyten, Kusti
    Jarvenpaa, Marko
    Marttinen, Pekka
    Gutmann, Michael U.
    Vehtari, Aki
    Corander, Jukka
    Kaski, Samuel
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19