Intelligent Pavement Roughness Forecasting Based on a Long Short-Term Memory Model with Attention Mechanism

被引:0
|
作者
Guo, Feng [1 ]
Qian, Yu [1 ]
机构
[1] Univ South Carolina, Dept Civil & Environm Engn, Columbia, SC 29208 USA
关键词
International roughness index (IRI); Long Short-Term Memory (LSTM); Attention mechanism; Pavement maintenance; Time-series features; PREDICTION;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The international roughness index (IRI) is one of the key indicators of pavement condition during its service life. Accurate IRI can assist transportation agencies in making maintenance decisions, identifying suitable maintenance approaches, and optimizing the financial plan. Although there are models which have been developed for predicting IRI based on artificial neural networks (ANNs), more features could be included and fused for model training to improve the performance. In this study, a long short-term memory (LSTM) model with an attention mechanism which is able to learn time-series related features with high efficiency and quality is developed to better IRI forecasting. The long-term pavement performance (LTPP) database is used for raw data extraction from different climate and traffic conditions. The prediction performance of different models including LSTM-attention (proposed), LSTM, Levenberg-Marquardt backpropagation (LM-b), and back propagation neural network (BPNN) is evaluated and compared with the pavement data from both South Carolina (SC) and Texas. The results show that the proposed model outperforms the other models on accuracy for both SC and Texas pavements, suggesting potential promising applications on the IRI.
引用
收藏
页码:128 / 136
页数:9
相关论文
共 50 条
  • [1] Pavement Icing Forecasting Based on Long Short-Term Memory Network
    Liu, Wenjiang
    Rao, Zhongyang
    2019 5TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION, 2020, 440
  • [2] Short-Term Photovoltaic Power Forecasting Based on Long Short Term Memory Neural Network and Attention Mechanism
    Zhou, Hangxia
    Zhang, Yujin
    Yang, Lingfan
    Liu, Qian
    Yan, Ke
    Du, Yang
    IEEE ACCESS, 2019, 7 : 78063 - 78074
  • [3] A forecast model of short-term wind speed based on the attention mechanism and long short-term memory
    Xing, Wang
    Qi-liang, Wu
    Gui-rong, Tan
    Dai-li, Qian
    Ke, Zhou
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 45603 - 45623
  • [4] A forecast model of short-term wind speed based on the attention mechanism and long short-term memory
    Wang Xing
    Wu Qi-liang
    Tan Gui-rong
    Qian Dai-li
    Zhou Ke
    Multimedia Tools and Applications, 2024, 83 : 45603 - 45623
  • [5] Forecasting Short-Term Passenger Flow of Subway Stations Based on the Temporal Pattern Attention Mechanism and the Long Short-Term Memory Network
    Wei, Lingxiang
    Guo, Dongjun
    Chen, Zhilong
    Yang, Jincheng
    Feng, Tianliu
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (01)
  • [6] Forecasting carbon price with attention mechanism and bidirectional long short-term memory network
    Qin, Chaoyong
    Qin, Dongling
    Jiang, Qiuxian
    Zhu, Bangzhu
    ENERGY, 2024, 299
  • [7] Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting
    Wang, Shouxiang
    Wang, Xuan
    Wang, Shaomin
    Wang, Dan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 109 : 470 - 479
  • [8] Electricity Load and Price Forecasting Using a Hybrid Method Based Bidirectional Long Short-Term Memory with Attention Mechanism Model
    Gomez, William
    Wang, Fu-Kwun
    Amogne, Zemenu Endalamaw
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023
  • [9] Forecasting Teleconsultation Demand with an Ensemble Attention-Based Bidirectional Long Short-Term Memory Model
    Chen, Wenjia
    Yu, Lean
    Li, Jinlin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 821 - 833
  • [10] Intrusion Detection Based on Bidirectional Long Short-Term Memory with Attention Mechanism
    Yang, Yongjie
    Tu, Shanshan
    Ali, Raja Hashim
    Alasmary, Hisham
    Waqas, Muhammad
    Amjad, Muhammad Nouman
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 801 - 815