Deep learning for blind structured illumination microscopy

被引:16
|
作者
Xypakis, Emmanouil [1 ,2 ]
Gosti, Giorgio [1 ,6 ]
Giordani, Taira [1 ,3 ]
Santagati, Raffaele [4 ,5 ]
Ruocco, Giancarlo [1 ]
Leonetti, Marco [1 ,2 ,6 ]
机构
[1] Ist Italiano Tecnol, Ctr Life Nano & Neuro Sci, Viale Regina Elena 291, I-00161 Rome, Italy
[2] D TAILS Srl, I-00161 Rome, Italy
[3] Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] Univ Bristol, Quantum Engn Technol Labs, Bristol BS8 1FD, Avon, England
[5] Boehringer Ingelheim GmbH & Co KG, Quantum Lab, Doktor Boehringer Gasse 5-11, A-1120 Vienna, Austria
[6] CNR, Inst Nanotechnol, Soft & Living Matter Lab, I-00185 Rome, Italy
基金
欧洲研究理事会;
关键词
DIFFRACTION-LIMIT; RECONSTRUCTION;
D O I
10.1038/s41598-022-12571-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Blind-structured illumination microscopy (blind-SIM) enhances the optical resolution without the requirement of nonlinear effects or pre-defined illumination patterns. It is thus advantageous in experimental conditions where toxicity or biological fluctuations are an issue. In this work, we introduce a custom convolutional neural network architecture for blind-SIM: BS-CNN. We show that BS-CNN outperforms other blind-SIM deconvolution algorithms providing a resolution improvement of 2.17 together with a very high Fidelity (artifacts reduction). Furthermore, BS-CNN proves to be robust in cross-database variability: it is trained on synthetically augmented open-source data and evaluated on experiments. This approach paves the way to the employment of CNN-based deconvolution in all scenarios in which a statistical model for the illumination is available while the specific realizations are unknown or noisy.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Deep learning for blind structured illumination microscopy
    Emmanouil Xypakis
    Giorgio Gosti
    Taira Giordani
    Raffaele Santagati
    Giancarlo Ruocco
    Marco Leonetti
    Scientific Reports, 12
  • [2] Deep Learning Structured Illumination Microscopy
    Shterman, Doron
    Feinberg, Gilad
    Tsesses, Shai
    Blau, Yochai
    Bartal, Guy
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [3] Fast structured illumination microscopy via deep learning
    CHANG LING
    CHONGLEI ZHANG
    MINGQUN WANG
    FANFEI MENG
    LUPING DU
    XIAOCONG YUAN
    Photonics Research, 2020, 8 (08) : 1350 - 1359
  • [4] Fast structured illumination microscopy via deep learning
    CHANG LING
    CHONGLEI ZHANG
    MINGQUN WANG
    FANFEI MENG
    LUPING DU
    XIAOCONG YUAN
    Photonics Research , 2020, (08) : 1350 - 1359
  • [5] Fast structured illumination microscopy via deep learning
    Ling, Chang
    Zhang, Chonglei
    Wang, Mingqun
    Meng, Fanfei
    Du, Luping
    Yuan, Xiaocong
    PHOTONICS RESEARCH, 2020, 8 (08) : 1350 - 1359
  • [6] Deep learning approach for nonlinear structured illumination microscopy
    Ling, Chang
    Du, Luping
    Yuan, Xiaocong
    AOPC 2020: DISPLAY TECHNOLOGY; PHOTONIC MEMS, THZ MEMS, AND METAMATERIALS; AND AI IN OPTICS AND PHOTONICS, 2020, 11565
  • [7] Advancement in Structured Illumination Microscopy Based on Deep Learning
    Li Xinran
    Chen Jiajie
    Wang Meiting
    Zheng Xiaomin
    Du Peng
    Zhong Yili
    Dai Xiaoqi
    Qu Junle
    Shao Yonghong
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2024, 51 (21):
  • [8] Adaptive optics for structured illumination microscopy based on deep learning
    Zheng, Yao
    Chen, Jiajia
    Wu, Chenxue
    Gong, Wei
    Si, Ke
    CYTOMETRY PART A, 2021, 99 (06) : 622 - 631
  • [9] Accelerated Phase Shifting for Structured Illumination Microscopy Based on Deep Learning
    Chen, Xu
    Li, Bowen
    Jiang, Shaowei
    Zhang, Terrance
    Zhang, Xu
    Qin, Peiwu
    Yuan, Xi
    Zhang, Yongbing
    Zheng, Guoan
    Ji, Xiangyang
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 : 700 - 712
  • [10] Improving axial resolution in Structured Illumination Microscopy using deep learning
    Boland, Miguel A.
    Cohen, Edward A. K.
    Flaxman, Seth R.
    Neil, Mark A. A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2199):