General recurrence and ladder relations of hypergeometric-type functions

被引:4
|
作者
Zarzo, A.
Yanez, R. J.
Dehesa, J. S. [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Fis Moderna, E-18071 Granada, Spain
[2] Univ Politecn Madrid, ETS Ingn Ind, Dept Matemat Aplicada, E-28040 Madrid, Spain
[3] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, E-18071 Granada, Spain
[4] Univ Granada, Fac Ciencias, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain
关键词
second-order differential equations; special functions; hypergeometric-type functions; classical orthogonal polynomials; recurrence formulas; ladder operators; sum rules;
D O I
10.1016/j.cam.2006.10.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for the explicit construction of general linear sum rules involving hypergeometric-type functions and their derivatives of any order is developed. This method only requires the knowledge of the coefficients of the differential equation that they satisfy, namely the hypergeometric-type differential equation. Special attention is paid to the differential-recurrence or ladder relations and to the fundamental three-term recurrence formulas. Most recurrence and ladder relations published in the literature for numerous special functions including the classical orthogonal polynomials, are instances of these sum rules. Moreover, an extension of the method to the generalized hypergeometric-type functions is also described, allowing us to obtain explicit ladder operators for the radial wave functions of multidimensional hydrogen-like atoms, where the varying parameter is the dimensionality. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:166 / 179
页数:14
相关论文
共 50 条
  • [1] Structural and recurrence relations for hypergeometric-type functions by nikiforov-uvarovmethod
    Cardoso, J.L.
    Fernandes, C.M.
    Álvarez-Nodarse, R.
    Electronic Transactions on Numerical Analysis, 2009, 35 : 17 - 39
  • [2] STRUCTURAL AND RECURRENCE RELATIONS FOR HYPERGEOMETRIC-TYPE FUNCTIONS BY NIKIFOROV-UVAROV METHOD
    Cardoso, J. L.
    Fernandes, C. M.
    Alvarez-Nodarse, R.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2009, 35 : 17 - 39
  • [3] 4-TERM RECURRENCE RELATIONS OF HYPERGEOMETRIC-TYPE POLYNOMIALS
    YANEZ, RJ
    DEHESA, JS
    ZARZO, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1994, 109 (07): : 725 - 733
  • [4] THE 3-TERM RECURRENCE RELATION AND THE DIFFERENTIATION FORMULAS FOR HYPERGEOMETRIC-TYPE FUNCTIONS
    YANEZ, RJ
    DEHESA, JS
    NIKIFOROV, AF
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 188 (03) : 855 - 866
  • [5] Generalized coherent states for associated hypergeometric-type functions
    Hounkonnou, MN
    Sodoga, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (36): : 7851 - 7862
  • [6] On Symmetrical Sonin Kernels in Terms of Hypergeometric-Type Functions
    Luchko, Yuri
    MATHEMATICS, 2024, 12 (24)
  • [7] Hypergeometric-type sequences
    Tabuguia, Bertrand Teguia
    JOURNAL OF SYMBOLIC COMPUTATION, 2024, 125
  • [8] ON HYPERGEOMETRIC-TYPE GENERATING RELATIONS ASSOCIATED WITH THE GENERALIZED ZETA FUNCTION
    Bin-Saad, M. G.
    Al-Gonah, A. A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2006, 75 (02): : 253 - 266
  • [9] Computing with Hypergeometric-Type Terms
    Tabuguia, Bertrand Teguia
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2024, 58 (02): : 23 - 26
  • [10] LADDER OPERATOR RELATIONS FOR HYPERGEOMETRIC-FUNCTIONS
    LAHA, U
    BHATTACHARYYA, C
    TALUKDAR, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (09): : L473 - L478