Renormalization group flow with unstable particles

被引:9
|
作者
Castro-Alvaredo, OA [1 ]
Fring, A
机构
[1] Univ Santiago Compostela, Dept Fis Particulas, E-15706 Santiago, Spain
[2] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
关键词
D O I
10.1103/PhysRevD.63.021701
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The renormalization group flow of an integral able two-dimensional quantum field theory which contains unstable particles is investigated. The analysis is carried out for the Virasoro central charge and the conformal dimensions as a function of the renormalization group flow parameter. This allows us to identify the corresponding conformal field theories together with their operator content when the unstable particles vanish from the particle spectrum. The specific model considered is the SU(3)(2)-homogeneous sine-Gordon model.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A METHOD OF RENORMALIZATION FOR UNSTABLE PARTICLES
    OKABAYASHI, T
    SATO, S
    PROGRESS OF THEORETICAL PHYSICS, 1957, 17 (01): : 30 - 42
  • [2] Field renormalization constant for unstable particles
    Kniehl, BA
    Sirlin, A
    PHYSICS LETTERS B, 2002, 530 (1-4) : 129 - 132
  • [3] EQUIVALENCE PROBLEMS IN MODELS WITH INFINITE RENORMALIZATION AND UNSTABLE PARTICLES
    SCARPETT.G
    VITIELLO, G
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1972, A 1 (01): : 196 - +
  • [4] Renormalization Group and the Ricci Flow
    Carfora, Mauro
    MILAN JOURNAL OF MATHEMATICS, 2010, 78 (01) : 319 - 353
  • [5] Supersymmetric renormalization group flow
    Jaewon Song
    Nature Physics, 2023, 19 : 1530 - 1532
  • [6] Gradient flow and the renormalization group
    Abe, Yoshihiko
    Fukuma, Masafumi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2018, 2018 (08):
  • [7] Cosmology is not a renormalization group flow
    Woodard, R. P.
    PHYSICAL REVIEW LETTERS, 2008, 101 (08)
  • [8] Geodesic renormalization group flow
    Dolan, BP
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (13): : 2413 - 2424
  • [9] Supersymmetric renormalization group flow
    Song, Jaewon
    NATURE PHYSICS, 2023, 19 (11) : 1530 - 1532
  • [10] Renormalization group flow in CDT
    Ambjorn, J.
    Goerlich, A.
    Jurkiewicz, J.
    Kreienbuehl, A.
    Loll, R.
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (16)