The effect of grain size on the deformation mechanisms and mechanical properties of polycrystalline TiN: A molecular dynamics study

被引:23
|
作者
Jia, Huiling [1 ]
Liu, Xuejie [1 ]
Li, Zhaoxi [1 ]
Sun, Shiyang [1 ]
Li, Mei [2 ]
机构
[1] Inner Mongolia Univ Sci & Technol, Sch Mech Engn, Baotou 014010, Peoples R China
[2] Inner Mongolia Univ Sci & Technol, Sch Met & Mat, Baotou 014010, Peoples R China
基金
中国国家自然科学基金;
关键词
Ceramic thin films; Deformation mechanism; Mechanical properties; Hall-Petch effect; Molecular dynamics; HALL-PETCH RELATIONSHIP; NANOCRYSTALLINE METALS; PLASTIC-DEFORMATION; BOUNDARY MOTION; SIC NANOWIRES; GROWTH; STRESS; DISLOCATIONS; SIMULATIONS; POTENTIALS;
D O I
10.1016/j.commatsci.2017.10.054
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The uniaxial tensile mechanical properties of polycrystalline TiN with 14 different grain sizes measuring 2.0-5.8 nm were studied via molecular dynamics with the second-nearest-neighbour modified embedded-atom method (2NN MEAM). The results show that the grain size affects the movement mechanisms of the grains and grain boundaries, and the relationship between grain size and tensile yield strength. The direct and inverse Hall-Petch formula of TiN are given. The dislocation migration of grain boundaries is the main deformation mechanism when the grain size is larger than 3.2 nm. When grains are smaller than 3.2 nm, grain rotation and grain boundary sliding are the preferred deformation mechanisms, which cause an inverse Hall-Petch effect. Polycrystalline TiN is at its hardest when the grain size ranges from 3 to 4 nm. The results can serve as theoretical basis for further doping non-metallic elements with critical grain sizes in the grain boundary produce superhard TiN composites. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:189 / 194
页数:6
相关论文
共 50 条
  • [1] Molecular dynamics simulations of polycrystalline titanium mechanical properties: Grain size effect
    Niu, Yong
    Jia, Yunjie
    Lv, Xiang
    Zhu, Yanchun
    Wang, Yaoqi
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [2] Effect of Grain Size on Mechanical Properties and Deformation Mechanism of Nano-Polycrystalline Pure Ti Simulated by Molecular Dynamics
    Zhang, Xiao
    Alduma, Adam Ibrahem Abdalrsoul
    Zhan, Faqi
    Zhang, Wei
    Ren, Junqiang
    Lu, Xuefeng
    METALS, 2025, 15 (03)
  • [3] Effect of grain size and wire size on mechanical properties of polycrystalline Ta nanowire: Molecular Dynamics simulation
    Kazanc, Sefa
    Canbay, Canan Aksu
    SOLID STATE COMMUNICATIONS, 2024, 379
  • [4] Grain size effect on deformation mechanisms and mechanical properties of titanium
    Huang, Z. W.
    Yong, P. L.
    Zhou, H.
    Li, Y. S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 773
  • [5] Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite
    Ghaffarian, Hadi
    Taheri, Ali Karimi
    Kang, Keonwook
    Ryu, Seunghwa
    Scripta Materialia, 2015, 95 (01) : 23 - 26
  • [6] Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite
    Ghaffarian, Hadi
    Taheri, Ali Karimi
    Kang, Keonwook
    Ryu, Sennghwa
    SCRIPTA MATERIALIA, 2015, 95 : 23 - 26
  • [7] EFFECT OF GRAIN-SIZE AND DEFORMATION SUBSTRUCTURE ON MECHANICAL PROPERTIES OF POLYCRYSTALLINE ALUMINUM
    FUJITA, H
    TABATA, T
    ACTA METALLURGICA, 1973, 21 (04): : 355 - 365
  • [8] Nanograin size effects on deformation mechanisms and mechanical properties of nickel: A molecular dynamics study
    Barboza, Alexandre Melhorance
    Bastos, Ivan Napoleao
    Rodriguez Aliaga, Luis Cesar
    MATERIALS EXPRESS, 2021, 11 (11) : 1841 - 1855
  • [9] Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene - A molecular dynamics study
    Chen, M. Q.
    Quek, S. S.
    Sha, Z. D.
    Chiu, C. H.
    Pei, Q. X.
    Zhang, Y. W.
    CARBON, 2015, 85 : 135 - 146
  • [10] Grain Size Effect on Mechanical Properties of Polycrystalline Graphene
    Park, Youngho
    Hyun, Sangil
    Chun, Myoungpyo
    COMPOSITES RESEARCH, 2016, 29 (06): : 375 - 378